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Why do we like conformal field theories (CFTs)?
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Why do we like conformal field theories (CFTs)?

1. They are more symmetric than 2. They describe universal end

“typical” QFTs. points of RG flows.
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Motivation

Why do we like conformal field theories (CFTs)?

1. They are more symmetric than 2. They describe universal end

“typical” QFTs. points of RG flows.
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Why do we like conformal field theories (CFTs)?

1. They are more symmetric than
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What should we do with CFTs... bootstrap them!
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How do we bootstrap a CFT?
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How do we bootstrap a CFT?

1. Focus on the set of local 2. Demand consistency of their
operators O\ (x). correlation functions on RY.
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How do we bootstrap a CFT?

1. Focus on the set of local 2. Demand consistency of their
operators O\ (x). correlation functions on RY.
(60a)(0)) =
X1 X2
P
A123

(91(x1)P2(x2)P3(x3)) = o | A1 Ba—Bs x5 A1+ 83— B2 x5 [ A2+ A3 —As

A
$1(x1)d2(x2) = ) |X12|Ai—iOAz—A Clpy (312, 32)01) (x2)
@
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Motivation
How do we bootstrap a CFT?

1. Focus on the set of local 2. Demand consistency of their
operators O\ (x). correlation functions on RY.

1
(p(xa)d(x)) = S

A123
(01(x1)92(x2)P3(x3)) = o | A1 Ba—Bs x5 A1+ 83— B2 x5 [ A2+ A3 —As

A
$1(x1)d2(x2) = ) |X12|Ai—iOAz—A Clpy (312, 32)01) (x2)
@

2 4 2 4
[Rattazzi, Rychkov, Tonni, Vichi; 0807.0004]
[Kos, Poland, Simmons-Duffin, Vichi; 1603.04436]
O
o A, = 0.518149(1)
) 31 3 A, = 1.412625(10)
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This is only a first step...

1. Focus on the set of local 2. Demand consistency of their
operators O\ (x). correlation functions on RY.
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This is only a first step...

1. Focus on the set of local 2. Demand consistency of their
operators O\ (x). correlation functions on RY.

L, Bootstrap CFTs with defects! |
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This is only a first step...
1. Focus on the set of local 2. Demand consistency of their
operators O (). correlation functions on RY.
L, Bootstrap CFTs with defects! |

If the defect is RP, symmetry breaking is
SO(d+1,1) = SO(p+1,1) x SO(q) where d = p+ g.
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This is only a first step...
1. Focus on the set of local 2. Demand consistency of their
operators O (). correlation functions on RY.
L, Bootstrap CFTs with defects! |

If the defect is RP, symmetry breaking is
SO(d+1,1) = SO(p+1,1) x SO(q) where d = p+ g.

RY o O(7,9) Same <@(§> and <(51(52@3> but
. a
Rp (6(%.y) = s
O(7) R b
: $(%,y)h(0)) = ———22
< )= s s

Connor Behan Conformal defects



This is only a first step...
1. Focus on the set of local 2. Demand consistency of their
operators O (). correlation functions on RY.
L, Bootstrap CFTs with defects! |

If the defect is RP, symmetry breaking is
SO(d+1,1) = SO(p+1,1) x SO(q) where d = p+ g.

RY o O(7,9) Same <@(§> and <(51(52@3> but
. a
Rp (6(%.y) = s
O(7) R b
: $(%,y)h(0)) = ———22
< )= s s

b. .~ -
2O _B(y, 8,)O(%)

Consider bulk-defect OPE: B(X,y) = Z _
ly|A=4

o
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The defect bootstrap

¢ ¢ ¢ ¢

[Liendo, Rastelli, van Rees; 1210.04258]
= [Billo, Goncalves, Lauria, Meineri; 1601.02883]
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The defect bootstrap
¢ ¢ ¢ ¢

[Liendo, Rastelli, van Rees; 1210.04258]
= [Billo, Goncalves, Lauria, Meineri; 1601.02883]

2 A A _
DA 300V "8a(u:v) Z%@“ *gp(v,u) =0
5

Db @é (&) — ZA¢¢oao§ 8o P)(e,m) =0
o
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The defect bootstrap

¢ ) ¢ ¢
[Liendo, Rastelli, van Rees; 1210.04258]
= [Billo, Goncalves, Lauria, Meineri; 1601.02883]
PN ‘15 PO =

Z oo(’)v gO u, V Z /\()(,)OU go Vs U) 0

o
—A b)

Z @é (& n) —Z/\moaof SfP(Em) =0

o
Want coeff|C|ents to be positive not sign indefinite.
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The defect bootstrap

¢ ) ¢ ¢
[Liendo, Rastelli, van Rees; 1210.04258]
= [Billo, Goncalves, Lauria, Meineri; 1601.02883]
PN ‘15 PO =

Z oo(’)v gO u, V Z /\()(,)OU go Vs U) 0

o
—A b)

Z @é (& n) —Z/\moaof SfP(Em) =0

o
Want coeff|C|ents to be positive not sign indefinite.

1. Embed system into a matrix equation with positivity properties.

M1 Mip My ao
Z[ao bys /\¢¢@] Mz Mz Mos| | bys | =C?
0,0 Mis Mz Msz| [ Agso
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The defect bootstrap

[Liendo, Rastelli, van Rees; 1210.04258]
— [Billo, Goncalves, Lauria, Meineri; 1601.02883]
Ay A,
E /\WOV g5(u,v) — E /\ su’gp(v,u) =0

Z boO (gd) é 77) Z Aoo@aog ¢f( (5 ) 0

Want coefﬁaents to be posmve not sign indefinite.

1. Embed system into a matrix equation with positivity properties.

Z o Mll M12 bT(’) B C [Lev.ine,‘ Paulos; 2305.07.0.78]
— TO ¢¢O M12 M22 )\(g(g@\ — [Meineri, Penedones, Spirig; 2305.11209]
o

Connor Behan Conformal defects



The defect bootstrap

[Liendo, Rastelli, van Rees; 1210.04258]
— [Billo, Goncalves, Lauria, Meineri; 1601.02883]
Ay A, _
E /\WOV g5(u,v) E /\ su’gp(v,u) =0

Z bioféd) En) = /\@@oaof Bof5(gm) =0
~ o

Want coefficients to be positive not sign indefinite.
1. Embed system into a matrix equation with positivity properties.

[Levine, Paulos; 2305.07078]

Z |:bT6 )\AA@\i| Mll M12 bTO = C [Meineri, Penedones, Spirig; 2305.11209]
5 900] Mz Maa| |A3s6 ‘ - Spir:

(T TP?) gives Ct in terms of b2T(’3' (T‘“’ggé) gives Ay in terms

of bTo)‘¢¢O' <<ZA><ZA>¢A><]3> completes system.
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The defect bootstrap

[Liendo, Rastelli, van Rees; 1210.04258]
— [Billo, Goncalves, Lauria, Meineri; 1601.02883]
Ay A,
E /\WOV g5(u,v) — E /\ su’gp(v,u) =0

Z boO (gd) é 77) Z Aoo@aog ¢f( (5 ) 0

Want coefﬁaents to be posmve not sign indefinite.
1. Embed system into a matrix equation with positivity properties.

[Levine, Paulos; 2305.07078]

Z |:bT6 )\AA@\i| Mll M12 bTO = C [Meineri, Penedones, Spirig; 2305.11209]
5 900] Mz Maa| |A3s6 ‘ - Spir:

(T TP?) gives Ct in terms of b2T(’3' (T‘“’ggé) gives Ay in terms

of bTo)‘¢¢O' <<ZA><ZA>¢A><]3> completes system. For boundaries in 2d, see

[Collier, Mazac, Wang; 2112.00750] [Meineri, Radhakrishnan; 7] .
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The defect bootstrap

2. Focus on the defect but use “defect changing operators”.
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The defect bootstrap

2. Focus on the defect but use “defect changing operators”.

TN, Let o1y, onT switch
% between trivial and

1

non-trivial line defects.

~
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The defect bootstrap

2. Focus on the defect but use “defect changing operators”.

TN, Let o1y, onT switch
oy between trivial and

A \
non-trivial line defects.

~

<aTN(z1)aNT(z2) @(23)6(;4)>

Can study this OPE since defect operators O(X;) are really bulk
operators with no defect! (zhou, Gaiotto, He, Zou; 2401.00039] [Lanzetta, Liu, Metlitski; 7]
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The defect bootstrap

2. Focus on the defect but use “defect changing operators”.

. /,’/,/:’_:\\\\ % Let o1y, onT Switch

AR between trivial and
N |
non-trivial line defects.

N

T T T NP S W |

<UTN(X*1)GNT(X*2) @(23)@(;4)>

Can study this OPE since defect operators O(X;) are really bulk
operators with no defect! (zhou, Gaiotto, He, Zou; 2401.00039] [Lanzetta, Liu, Metlitski; 7]

3. Focus on the defect but input bulk equations of motion.

3;;7"“’()?7)/):—3ﬁT“V(;{7y)7éo’ AT:d¢p
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The defect bootstrap

2. Focus on the defect but use “defect changing operators”.

_ e ~ Let o1y, onT switch
[N between trivial and
N 1
non-trivial line defects.

~

<am(q)am(x3) @(zg)@(z4)>

Can study this OPE since defect operators O(X;) are really bulk
operators with no defect! (zhou, Gaiotto, He, Zou; 2401.00039] [Lanzetta, Liu, Metlitski; 7]

3. Focus on the defect but input bulk equations of motion.
PTH(R,y) = —OUTH(R,y) 0, Ar=d+#p

Has been explored in free scalar theory (this talk) and Maxwell theory:
[Herzog, Shrestha; 2202.09180] [Bartlett-Tisdall, Herzog, Schaub; 2312.07692]
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Free boson near a defect

O¢(X,y) = 0 has two solutions for each SO(q) spin s.

O(,y) = Y Yooy [B () + By 2o () 4
s=0
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Free boson near a defect

O¢(X,y) = 0 has two solutions for each SO(q) spin s.

O(%,y) = Dy yie [P (0) + 6Oy Pl 5 ()| +
s=0
Special operators:
(s)
+
(_S)

d—
2 +
_ d—

> >
M 0

— S

I
‘c

2
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Free boson near a defect

O¢(X,y) = 0 has two solutions for each SO(q) spin s.

Y) =i vic [BE [ (R) 4 By P (R) 4

Special operators: Boundary (¢ = 1,s = 0) example:
AP =42 4 HO =4, D: b =0
AC) —p—d2 0 = 9,4, N: b =0
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Free boson near a defect

O¢(X,y) = 0 has two solutions for each SO(q) spin s.

Y) =i vic [BE [ (R) 4 By P (R) 4

Special operators: Boundary (¢ = 1,s = 0) example:
AP =432 4 O = ¢, D:b” =0
AC) —p—d2 0 = 9,4, N: b =0

Starting with D or N, we can couple to any CFT, with relevant ®.

St =g / b0 arz, 0, T o gV p®
RP
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Free boson near a defect

O¢(X,y) = 0 has two solutions for each SO(q) spin s.

Y) =i vic [BE [ (R) 4 By P (R) 4

Special operators: Boundary (¢ = 1,s = 0) example:
AP =432 4 O = ¢, D:b” =0
AC) —p—d2 0 = 9,4, N: b =0

Starting with D or N, we can couple to any CFT, with relevant ®.

St =g / b0 arz, 0, T o gV p®
RP

Key relations for bootstrapping bi # 0 defects:
A = h_;,_(A DX _gand A__5=r- (A,E))\Jr_@

++0
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OPE relations in a different context

Consider long range Ising model H = —J 3, . 0i0;/li — j|9+s.
Action ‘ Nonlocal EOM
S = [ 2R dIxdy + ) [ p*dx P(x) = | LI
[Fisher, Ma, Nickel; 72] A¢ “I— A¢3 = d
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OPE relations in a different context

Consider long range Ising model H = —J 3, . 0i0;/li — jlats.

Action Nonlocal EOM
S = [ fH d?xddy + A [ ¢*dx P(x) = | LI
[Fisher, Ma, Nickel; 72] A¢ “I— A 3 = d
S=Ssri+ [ ‘)f((xﬂd Jddxddy—l—gfaxdd f e yld .
[CB, Rastelli, Rychkov, Zan; 1703.05325] Ag + A, =d
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OPE relations in a different context

Consider long range Ising model H = —J 3%, .00/l — j|9+s.

Action (same fixed point for both!) Nonlocal EOM
S = [ {2 d?xddy + A [ ¢*dx 0 (x) = [ 2O
[Fisher, Ma, Nickel; 72] A¢ + A¢3 == d
S = Ssri +f ra y|d sddxddy+gfaxdd f o y|d x
[CB, Rastelli, Rychkov, Zan; 1703.05325] A + AX — d
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OPE relations in a different context

Consider long range Ising model H = —J 3%, .00/l — j|9+s.

Action (same fixed point for both!) Nonlocal EOM
S = [ {2 d?xddy + A [ ¢*dx 0 (x) = [ 2O
[Fisher, Ma, Nickel; 72] A¢ + A¢3 == d
S = Ssri +f ra y|d sddxddy+gfaxdd f o y|d x
[CB, Rastelli, Rychkov, Zan; 1703.05325] A + AX — d

Can derive A\yo0 = Ko (A, ) Agy0 and Ayyo = ry (A, £)Aoyo since
(oxO) and (xxO) are shadow integral transforms of each other

[Paulos, Rychkov, van Rees, Zan; 1509.00008] [CB; 1810.07199] .
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OPE relations in a different context

Consider long range Ising model H = —J 37, . 0;0;/|i — j|P™

Action (same fixed point for both!) NonIocaI EOM
X — n — dP
S = [ R dPRdPy + A [ *dPs = [ 2t
[Fisher, Ma, Nickel; 72] A¢ + A @3 = =p
X dP
S=Sspi+ [ ‘Xf )3|<py2, dPXdPy + g [ 6RdPX f ﬁi(y;'py
Aa +Ay=p

[CB, Rastelli, Rychkov, Zan; 1703.05325]

Can derive ), ;5 = Fo (B, DXgep and Ao = iy (B, 0)A; 5 since
(6X0O) and (xXO) are shadow integral transforms of each other

[Paulos, Rychkov, van Rees, Zan; 1509.00008] [CB; 1810.07199] .

g=2-5s

6 =49,
g=2+s

£ =49,
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General OPE relations

Avo _ pTBE+ANM3(E+p+q—2- 1)
Ao T(E+2-q+A)ME(+p— D)
Ao _ i BUABNME(C+p—q+2-A)
Ao M3(6=2+q+A)rz(0+p— D)
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General OPE relations

Mo _ RTECH A)]r[%(ej p+q—2-— §)]
Ayo TlE(E+2—q+ AT+ p— D)
Ao _ i BUAANG(+p—q+2-A)
Ao M3(0=2+q+ D)L+ p— D))

[CB; 1810.07199]

1
d(;l 0.64 0.66 0.68 0.70 0.72 0.74
A,
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General OPE relations

Mo _ RTECH A)]r[%(ej p+q—2-— §)]
Ayo TlE(E+2—q+ AT+ p— D)
Ao _ i BUAANG(+p—q+2-A)
Ao M3(0=2+q+ D)L+ p— D))

094 9)/2)
 6r(g/2)

[CB; 1810.07199]

1
d(;l 0.64 0.66 0.68 0.70 0.72 0.74
A,
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General OPE relations

Yo oMUt se + MMt s t ot ptqg—2-A)
As_lf(gsl*sz Ma(l—s1—s2+2—q+ D)l —si2+p—A))
AT TR - s+ AL —s1— 2+ p— g +2— A)]
Ajf%‘sl‘SQ MA(+si+5—2+q+ D)L+ s+ p— A)]

bEIT[(4 — q)/2 — s1] 3
b q/2 + 1]

[CB; 1810.07199] 17

15
1.

d(;l 0.64 0.66

0.68 0.70 0.72 0.74
A,
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General OPE relations

51,52,—51—S: ~ N
e R _ RI'[%(Z—i—su +A)NM(U+si+s+p+qg—2—A)
. R Ma(l—s1—s2+2—q+ D)l —si2+p—A))
51,52,—S1—S: -~ N
AT TR s+ DM —si—s+p—q+2—2)]
AT M3 +si+5—2+q+A)M[F(l+ s+ p—A)]
bEr[(4— g)/2 - ] .
b a/2 + ]
[CB; 1810.07199] g 1:7
¢ (b QS ¢ lbdhl 0.64 0.66 (HAZH 0.70 0.72 0.74
l o | B \l/\/ Right side is regular so we get
1],5[5) O 12255) @) constraints on the left side.
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Most zﬁ(_s)(f(’) are non-unitary (s > 4;—‘7).
Only wf)(_") makeS the defect tr|V|a| [Lauria, Liendo, van Rees, Zhao; 2005.02413] .
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Most zﬁ(_s)(f(’) are non-unitary (s > 4;—‘7).

Only 12&5) ()_() makes the defect tr|V|a| [Lauria, Liendo, van Rees, Zhao; 2005.02413] .
Allowed cases (besides fractional):
g=1,s=0
g=2,5= 5 (monodromy)

g=3,5s=0
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Most zp ( X) are non-unitary (s > %5 =1).
Only w+ (X) makes the defect tr|V|a| [Lauria, Liendo, van Rees, Zhao; 2005.02413] .

Allowed cases (besides fractional): Start with g = 1:
g=1s5=0 b2 =1+292a,
1 _
g=2,s= > (monodromy) b2 = (d —2) (1 —29722,)
2—d 2—d
g=3,s=0 -2 <ap <2
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Most zp ( X) are non-unitary (s > %5 =1).
Only w+ (X) makes the defect tr|V|a| [Lauria, Liendo, van Rees, Zhao; 2005.02413] .

Allowed cases (besides fractional): Start with g = 1:
g=1s5=0 b2 =1+292a,
1 _
g=2,s= > (monodromy) b2 = (d —2)(1-272a,)

q:3s:0 _22 d<a <22d

~

Bootstrap <¢+¢+¢+¢+> <A b_tp_ip_ > < /RIS

relations reduce {)\

) > where OPE

40 A B A -0
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Most w ( X) are non-unitary (s > %5 =1).
Only w+ (X) makes the defect tr|V|a| [Lauria, Liendo, van Rees, Zhao; 2005.02413] .

Allowed cases (besides fractional): Start with g = 1:
9=1,5=0 b2 =1+292a,
1 _
g=2,s= > (monodromy) b2 = (d —2)(1-272a,)
2—d 2—d
g=3,5=0 —27 s ap <2
Bootstrap (i by by by ), (b $- ), <w+¢+w ) where OPE
relations reduce {)‘++oa LB A } — _ar

Odd spin: IfA;édfl+2n+€((97$[w+1/) lne) then A, 5 =0

Evenspin: If A=d —2+2n+£ (O = [yt ]nss [1b-00_]ne) then
AL _5 = 0 while )‘++o and A__ 5 are unconstrained

[CB, Di Pietro, Lauria, van Rees; 2009.03336]
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Results, 4d

4.0

3.81

3.61

(=

(<

3.41

3.21

3.0 == - - - -

—0.2 —0.1 0.0 0.1 0.2
CL¢2

Maximizing the gap for spin-2 operators from left (Dirichlet) to

I’Ight Neumann [CB, Di Pietro, Lauria, van Rees; 2009.03336] .
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<1

Ro>16| By>14 A>12

2.00
—0.4 —0.2 0.0 0.2
a

[CB, Di Pietro, Lauria, van Rees; 2111.04747]
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Results, 3d

2.15

B> 16[ B> 1 By >12 Ay>1
—0.2

2.00
—0.4

Ay

[CB, Di Pietro, Lauria, van Rees; 2111.04747]
. N 1 3 A 2 _ 4
Use large m minimal model w/ A2y ~ 5 — 5, A1,3) ~ in

Sint = g/ 1/3—&)(1,2) d2)_(’+ h/ cI]S(:l:?*)dz)?'
R2 R2
Plug fixed point into

2d01d—1”2+”

23—d
2.d/25
Ir g d 1|—[d+1]2

Mgl
Connor Behan Conformal defects
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Results, 3d

5
.15 —
215 4 $90%000,0 ce0c0c00sccce So0e® Ll ek
2.10 3
(/”]' & .”’L‘!/.u,_.,..um*ﬁ’o’7777
2
2.05
~ ~ - 1 woe
Ag> 16| Ag>14 Ag>12 Ag>1
2.00
—0.4 —0.2 0.0 0.2 0.4
A2
0 —04 —0.2 0.0 0.2 0.4
[CB, Di Pietro, Lauria, van Rees; 2111.04747] ag

Use large m minimal model w/ 3(172) ~ % % 3(13) ~2—24in

Sine = g/ 1/;—&)(172) d2)_(’+ h/ cI]S(:l:?*)dz)?'
R2 R2
Plug fixed point into

2d01d—1”2+”

2 _
d/2= — .
Tr gm d+1 r[d+1]2

r[5]
Connor Behan Conformal defects
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The displacement operator

Displacement D(X) = T, | (X,0) is a protected A = d scalar.
Normalization <[A)(>_<’)ﬁ(0)> = Cp/|X|?¢ guarantees

/W_1 <¢(X1)¢(xz)ﬁ(>?)> d97I% = (9, + y,) (b(x1)(x2)) -
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The displacement operator

Displacement D(X) = T, | (X,0) is a protected A = d scalar.
Normalization <[A)(>_<’)ﬁ(0)> = Cp/|X|?¢ guarantees

/W_1 <¢(X1)¢(xz)ﬁ(>?)> d97I% = (9, + y,) (b(x1)(x2)) -

Use bulk-defect crossing for this correlator to derive

Ao 2CpS3+2%,  A__p  2CpS;—2%a

d—2  4(d-1)S;2 " d-2 25, b2
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The displacement operator

Displacement D(X) = T, | (X,0) is a protected A = d scalar.

Normalization <f)(>?)D(0)> = Cp/|X|?¢ guarantees

/}Rd_1 <¢(X1)<Z5(x2)5(>?)> d97IR = (9), + dy,) (P(x1)p(x2)) -

Use bulk-defect crossing for this correlator to derive

Ao 2CpS3+2%,  A__p  2CpS;—2%a

d—2  4(d-1)S;2 " d-2 25, b2

| 0.013
0.0050} ks

0.012 \

0.0045 0.011

0.010
S 0.009

0.008
0.0030 0.007
‘ 0.006
0.005

-0.2 -0.1 0.0 0.1 0.2 —0.4 —0.2 0.0 0.2 0.4
ag?

_0.0040}

0.0035

0.0025

agp2
Lower edge is the solvable deformation in (witten; hep-th/o112258] .
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Back to long-range Ising

1.00+

X3¢
X%
X%
X%

0.994

X%

3-loop results from

[Benedetti, Gurau, Harribey, Suzuki; 2007.04603]
0.971 are close to numerical kinks from
[CB, Lauria, Nocchi, van Vliet; 2311.02742] .

3 0.98

X%

0.961 %

-08 —06 04 02 0.0
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Back to long-range Ising

1.00+

X3¢
X%
X%
X%

0.994

X%

3-loop results from

[Benedetti, Gurau, Harribey, Suzuki; 2007.04603]
0.971 are close to numerical kinks from
[CB, Lauria, Nocchi, van Vliet; 2311.02742] .

3 0.98

X%

208 —06 —04 —02 00
0.951 \'\
Ay = 0.425

0.80

Ay =0.275 Ay =0.35

0.75 — : -
2020 —015  —0.10  —0.05 0.0

A2
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Back to long-range Ising

1.001
iy
0.99 % .
) 3-loop results from
0.981
1 [Benedetti, Gurau, Harribey, Suzuki; 2007.04603]
0.971 are close to numerical kinks from
% [CB, Lauria, Nocchi, van Vliet; 2311.02742] .
0.961 % %
XX
—08 —06 —04 —02 00
ag
1.00 1.50
0.951 \'\ 1.48
A, = 0.425
0.90 1.46
(/? = Ay = 0.65726
0.851 1.44
Ay =0.61089
0.801 1.42
Ay =0.275 Ay =0.35 Ay = 0.56452
0.75 — ‘ — 1.40 : : ‘
Z020 -015 —010  —0.05  0.00 2008  —006 —0.04 —0.02  0.00
Qg2 Qg2
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More structure

LRI admits OPE relations and
comes from ¢* flow in g =2 — 5
and ¥ flow in g =2+ s.
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More structure

LRI admits OPE relations and If this duality holds generally,
comes from ¢* flow in g =2 — 5 g = 3 will immediately follow
and 6% flow in g =2+ s. from g = 1.

AO _PTa-2 o _pPt(-q) -2
S R

Switching g <> 4 — q, @Zf) > @ZAJ@ leaves OPE relations invariant!
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More structure

LRI admits OPE relations and If this duality holds generally,
comes from ¢* flow in g =2 — 5 g = 3 will immediately follow
and 6% flow in g =2+ s. from g = 1.

AO _PTa-2 o _pPt(-q) -2
S R

Switching g <> 4 — q, @Zf) > @ZAJ@ leaves OPE relations invariant!

4.0

3.8

3.6

(«
3.4

3.2

—0.2 —0.1 0.0 0.1 0.2

3.0
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More structure

LRI admits OPE relations and If this duality holds generally,
comes from ¢* flow in g =2 — 5 g = 3 will immediately follow
and 6% flow in g =2+ s. from g = 1.

AO _PTa-2 o _pPt(-q) -2
S R

Switching g <> 4 — q, @Zf) > @ZAJ@ leaves OPE relations invariant!

40 40
3.8 3.8
3.6 3.6
(< =
3.4 3.4
3.2 3.2
3.0 == 3.0
—02 -01 00 01 02 0.00 002 004 006 008 010 0.2
ay ag
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More structure

LRI admits OPE relations and If this duality holds generally,
comes from ¢* flow in g =2 — 5 g = 3 will immediately follow
and 6x flow in g =2 + 5. from g = 1.
X +9-2 0o _pt(4-q) -2
AP =P A =
+ 2 T 2

Switching g < 4 — q, 1/353) > 1/3@) leaves OPE relations invariant!

215 215
2.10 210
= AP
2.05 205
Ro> 16| By>14 Ro>12 Ry>1 2.00 Bp216 | 8y>14 K212 &z
R — 0.0 0.2 0.4 0.0 0.1 02 03 04 05
az ag?
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Next steps

@ Evidence of g <> 4 — g duality should also be visible from an
analytic bootstrap point of View [Lemos, Liendo, Meineri, Sarkar; 1712.08185]
[Liendo, Linke, Schomerus; 1903.05222] .

@ Self-dual case g = 2 allows monodromy and should be bootstrapped
[CB, Lauria, van Vliet; WIP] .

@ OPE relations should exist for free fermion theory and analogous
defect CFTS Wlth SUSY [Bason, Di Pietro, Valandro, van Muiden; 2311.17888] .

@ Unique numerical needs could benefit from more specialized tools

[Ghosh, Zhang; 2307.11144] .
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Next steps

@ Evidence of g <> 4 — g duality should also be visible from an
analytic bootstrap point of View [Lemos, Liendo, Meineri, Sarkar; 1712.08185]
[Liendo, Linke, Schomerus; 1903.05222] .

@ Self-dual case g = 2 allows monodromy and should be bootstrapped
[CB, Lauria, van Vliet; WIP] .

@ OPE relations should exist for free fermion theory and analogous
defect CFTS Wlth SUSY [Bason, Di Pietro, Valandro, van Muiden; 2311.17888] .

@ Unique numerical needs could benefit from more specialized tools

[Ghosh, Zhang; 2307.11144] .

Thanks for your attention!
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