Coupled Minimal Models (Irrationally) Revisited

Connor Behan

Oxford Mathematical Institute
2022-12-02
[2211.16503] with A. Antunes
$C_{\text {CF }}$
CFT $T_{I R}$

Relevant \mathcal{O}

Free scalar ${\underset{C F T}{ } \underbrace{}_{I R}}^{C F \phi^{4}}$

When does the ε expansion work best?

$N \times$ Free scalar $\underbrace{}_{C F T_{U V}} \lambda_{i j k l} \phi^{i} \phi^{j} \phi^{k} \phi^{\prime} \begin{aligned} & \text { Zoo of new fixed points in } \\ & {[\text { [Osborn, Stergiou; 17, 20] }} \\ & {[\text { CRodello, Safari, Vaccavo, Stergiou; 18] }} \\ & {[\text { Hogervorst, Toldo; 20] }}\end{aligned}$

(1) When the UV is a tensor product of well understood CFTs
(2) When ε is small

When does the ε expansion work best?

(1) When the UV is a tensor product of well understood CFTs
(2) When ε is small

$$
\begin{aligned}
& S_{1}=\sum_{i=1}^{N} S_{\text {lsing }}^{i}+g \int d^{d} x \sum_{i<j} \epsilon_{i} \epsilon_{j} \\
& S_{2}=\sum_{i=1}^{N} S_{q-\text { Potts }}^{i}+g \int d^{2} x \sum_{i<j} \epsilon_{i} \epsilon_{j}
\end{aligned}
$$

When does the ε expansion work best?

$N \times$ Free scalar $\quad C F T_{U V}$
Zoo of new fixed points in
$\lambda_{i j k l} \phi^{i} \phi^{j} \phi^{k} \phi^{l}$ [Osborn, Stergiou; 17, 20] [Rychkov, Stergiou; 18]
[Codello, Safari, Vacca, Zanusso; 19, 20]
[Hogervorst, Toldo; 20]
(1) When the UV is a tensor product of well understood CFTs
(2) When ε is small
$S_{1}=\sum_{i=1}^{N} S_{\text {lsing }}^{i}+g \int d^{d} x \sum_{i<j} \epsilon_{i} \epsilon_{j}$
$S_{2}=\sum_{i=1}^{N} S_{q-\text { Potts }}^{i}+g \int d^{2} x \sum_{i<j} \epsilon_{i} \epsilon_{j}$

Questions about these models

- S_{1} : Is fixed point in $d=3$ more stable than $O(3)$? [Aharony; 73]
- Yes. [Chester, Landry, Liu, Poland, Simmons-Duffin, Su, Vichi; 20]
- S_{2} : Is fixed point for $q=3$ rational? [Dotsenko, Jacobsen, Lewis, Picco; 98]
- $h \notin \mathbb{Q}$ or $c \notin \mathbb{Q}$ would say no. [Vafa; 88]

Questions about these models

- S_{1} : Is fixed point in $d=3$ more stable than $O(3)$? [Aharony; 73]
- Yes. [Chester, Landry, Liu, Poland, Simmons-Duffin, Su, Vichi; 20]
- S_{2} : Is fixed point for $q=3$ rational? [Dotsenko, Jacobsen, Lewis, Picco; 98]
- $h \notin \mathbb{Q}$ or $c \notin \mathbb{Q}$ would say no. [Vafa; 88]

	Rational	Irrational
Only Virasoro		Virasoro analytic bootstrap [Collier, Gobeil, Maxfield, Perlmutter; 18]
Extended chiral algebra	Exact methods	No known methods

Questions about these models

- S_{1} : Is fixed point in $d=3$ more stable than $O(3)$? [Aharony; 73]
- Yes. [Chester, Landry, Liu, Poland, Simmons-Duffin, Su, Vichi; 20]
- S_{2} : Is fixed point for $q=3$ rational? [Dotsenko, Jacobsen, Lewis, Picco; 98]
- $h \notin \mathbb{Q}$ or $c \notin \mathbb{Q}$ would say no. [Vafa; 88]

	Rational	Irrational
Only Virasoro		Virasoro analytic bootstrap [Collier, Gobeil, Maxfied, Perlmutter; 18]
Extended chiral algebra	Exact methods	No known methods

No literature on irrational, unitary CFTs with discrete spectrum and only Virasoro symmetry (irrational sigma models have higher symmetry like $\mathcal{N}=2$)!

Minimal models at large m

Minimal models at large m

From $c=1-\frac{6}{m(m+1)}$ and $h_{(r, s)}=\frac{[(m+1) r-m s]^{2}-1}{4 m(m+1)}$,
$\phi_{(1,2)}^{i}$ has weight $\frac{1}{4}-O\left(m^{-1}\right), \phi_{(1,3)}^{i}$ has weight $1-O\left(m^{-1}\right)$.

Minimal models at large m

From $c=1-\frac{6}{m(m+1)}$ and $h_{(r, s)}=\frac{[(m+1) r-m s]^{2}-1}{4 m(m+1)}$,
$\phi_{(1,2)}^{i}$ has weight $\frac{1}{4}-O\left(m^{-1}\right), \phi_{(1,3)}^{i}$ has weight $1-O\left(m^{-1}\right)$.

$$
\begin{aligned}
S & =\sum_{i=1}^{N} S_{m}^{i}+g_{\epsilon} \int d^{2} \times N^{-\frac{1}{2}} \sum_{i=1}^{N} \phi_{(1,3)}^{i} \\
& +g_{\sigma} \int d^{2} \times\binom{ N}{4}^{-\frac{1}{2}} \sum_{i<j<k<1} \phi_{(1,2)}^{i} \phi_{(1,2)}^{j} \phi_{(1,2)}^{k} \phi_{(1,2)}^{\prime}
\end{aligned}
$$

Minimal models at large m

From $c=1-\frac{6}{m(m+1)}$ and $h_{(r, s)}=\frac{[(m+1) r-m s]^{2}-1}{4 m(m+1)}$,
$\phi_{(1,2)}^{i}$ has weight $\frac{1}{4}-O\left(m^{-1}\right), \phi_{(1,3)}^{i}$ has weight $1-O\left(m^{-1}\right)$.

$$
\begin{aligned}
S & =\sum_{i=1}^{N} S_{m}^{i}+g_{\epsilon} \int d^{2} \times N^{-\frac{1}{2}} \sum_{i=1}^{N} \phi_{(1,3)}^{i} \leftarrow \int d^{2} x \epsilon \\
& +g_{\sigma} \int d^{2} x\binom{N}{4}^{-\frac{1}{2}} \sum_{i<j<k<1} \phi_{(1,2)}^{i} \phi_{(1,2)}^{j} \phi_{(1,2)}^{k} \phi_{(1,2)}^{\prime} \leftarrow \int d^{2} x \sigma
\end{aligned}
$$

Renormalization group

Use one loop conformal perturbation theory [Zamolodchikov; 87].

$$
\begin{aligned}
& \beta_{\sigma}=\frac{6}{m} g_{\sigma}-4 \pi \sqrt{\frac{3}{N}} g_{\sigma} g_{\epsilon}-6 \pi\binom{N-4}{2}\binom{N}{4}^{-\frac{1}{2}} g_{\sigma}^{2} \\
& \beta_{\epsilon}=\frac{4}{m} g_{\epsilon}-\frac{4 \pi}{\sqrt{3 N}} g_{\epsilon}^{2}-2 \pi \sqrt{\frac{3}{N}} g_{\sigma}^{2}
\end{aligned}
$$

Renormalization group

Use one loop conformal perturbation theory [Zamolodchikov; 87] .

$$
\begin{aligned}
& \beta_{\sigma}=\frac{6}{m} g_{\sigma}-4 \pi \sqrt{\frac{3}{N}} g_{\sigma} g_{\epsilon}-6 \pi\binom{N-4}{2}\binom{N}{4}^{-\frac{1}{2}} g_{\sigma}^{2} \\
& \beta_{\epsilon}=\frac{4}{m} g_{\epsilon}-\frac{4 \pi}{\sqrt{3 N}} g_{\epsilon}^{2}-2 \pi \sqrt{\frac{3}{N}} g_{\sigma}^{2}
\end{aligned}
$$

For $P=3 N^{4}-53 N^{3}+357 N^{2}-1069 N+1194, Q=3(N-4)(N-5)$,

$$
\left(g_{\sigma}^{*}, g_{\epsilon}^{*}\right)=(0,0), \quad\left(g_{\sigma}^{*}, g_{\epsilon}^{*}\right)=\left(0, \frac{2 \sqrt{3}}{m \pi}\right)
$$

$$
\left(g_{\sigma}^{*}, g_{\epsilon}^{*}\right)=\left(\pm \frac{\sqrt{(N-3)_{4}}}{\pi m \sqrt{2 P(N)}}, \frac{\sqrt{3 P(N)} \pm Q(N)}{\pi m \sqrt{P(N) / N}}\right)
$$

Renormalization group

Use one loop conformal perturbation theory [Zamolodchikov; 87].

$$
\begin{aligned}
& \beta_{\sigma}=\frac{6}{m} g_{\sigma}-4 \pi \sqrt{\frac{3}{N}} g_{\sigma} g_{\epsilon}-6 \pi\binom{N-4}{2}\binom{N}{4}^{-\frac{1}{2}} g_{\sigma}^{2} \\
& \beta_{\epsilon}=\frac{4}{m} g_{\epsilon}-\frac{4 \pi}{\sqrt{3 N}} g_{\epsilon}^{2}-2 \pi \sqrt{\frac{3}{N}} g_{\sigma}^{2}
\end{aligned}
$$

For $P=3 N^{4}-53 N^{3}+357 N^{2}-1069 N+1194, Q=3(N-4)(N-5)$,

$$
\begin{aligned}
& \left(g_{\sigma}^{*}, g_{\epsilon}^{*}\right)=(0,0), \quad\left(g_{\sigma}^{*}, g_{\epsilon}^{*}\right)=\left(0, \frac{2 \sqrt{3}}{m \pi}\right) \\
& \left(g_{\sigma}^{*}, g_{\epsilon}^{*}\right)=\left(\pm \frac{\sqrt{(N-3)_{4}}}{\pi m \sqrt{2 P(N)}}, \frac{\sqrt{3 P(N)} \pm Q(N)}{\pi m \sqrt{P(N) / N}}\right)
\end{aligned}
$$

Dimensions of σ, ϵ for $N=4$ become $\Delta=2 \pm \frac{2 \sqrt{6}}{m}$.

Minimal chiral symmetry implies irrationality

UV chiral algebra is $\mathfrak{V i x}^{N}$ generated by T^{i}.
IR chiral algebra is at least $\widehat{\mathfrak{V i r}}$ generated by $\hat{T} \equiv \sum_{i} T^{i}$.

Minimal chiral symmetry implies irrationality

UV chiral algebra is $\mathfrak{V i r}^{N}$ generated by T^{i}.
IR chiral algebra is at least $\widehat{\mathfrak{V i r}}$ generated by $\hat{T} \equiv \sum_{i} T^{i}$.

$$
\bar{\partial} T=b g V+O\left(g^{2}\right)
$$

Operator of weight $(\ell, 0)$ becomes long by eating $(\ell, 1)$ [Rychkov, Tan; 15].

Minimal chiral symmetry implies irrationality

UV chiral algebra is $\mathfrak{V i r}^{N}$ generated by T^{i}.
IR chiral algebra is at least $\widehat{\mathfrak{V i r}}$ generated by $\hat{T} \equiv \sum_{i} T^{i}$.

$$
\bar{\partial} T=b g V+O\left(g^{2}\right)
$$

Operator of weight $(\ell, 0)$ becomes long by eating $(\ell, 1)$ [Rychkov, Tan; 15].

$$
b^{2} g^{2}\left\langle V\left(z_{1}\right) V\left(z_{2}\right)\right\rangle=\left\langle\bar{\partial} T\left(z_{1}\right) \bar{\partial} T\left(z_{2}\right)\right\rangle \Rightarrow \gamma_{T}=b^{2} g^{2}
$$

Anomalous dimension known in terms of b [Giombi, Kirilin; 16] .

Minimal chiral symmetry implies irrationality

UV chiral algebra is $\mathfrak{V i r}^{N}$ generated by T^{i}.
IR chiral algebra is at least $\widehat{\mathfrak{V i r}}$ generated by $\hat{T} \equiv \sum_{i} T^{i}$.

$$
\bar{\partial} T=b g V+O\left(g^{2}\right)
$$

Operator of weight $(\ell, 0)$ becomes long by eating $(\ell, 1)$ [Rychkov, Tan; 15].

$$
b^{2} g^{2}\left\langle V\left(z_{1}\right) V\left(z_{2}\right)\right\rangle=\left\langle\bar{\partial} T\left(z_{1}\right) \bar{\partial} T\left(z_{2}\right)\right\rangle \Rightarrow \gamma_{T}=b^{2} g^{2}
$$

Anomalous dimension known in terms of b [Giombi, Kirilin; 16] .

$$
b g\left\langle V\left(z_{1}\right) V\left(z_{2}\right)\right\rangle=\left\langle\bar{\partial} T\left(z_{1}\right) V\left(z_{2}\right)\right\rangle=g \int d^{2} z\left\langle\bar{\partial} T\left(z_{1}\right) V\left(z_{2}\right) \sigma(z)\right\rangle
$$

Agrees with two loop calculation [CB, Rastelli, Rychkov, Zan; 17].

Lifting of currents

T^{i} goes with $V^{i} \equiv \sum_{(j<k<1) \neq i}\left[\partial \phi^{i}\right] \phi^{j} \phi^{k} \phi^{\prime}-\frac{1}{4} \partial\left[\phi^{i} \phi^{j} \phi^{k} \phi^{\prime}\right]$ yielding

$$
\gamma\left[T^{i}-T^{i+1}\right]=\left(g_{\sigma}^{*} \pi\right)^{2} \frac{3}{N-1}
$$

Lifting of currents

T^{i} goes with $V^{i} \equiv \sum_{(j<k<1) \neq i}\left[\partial \phi^{i}\right] \phi^{j} \phi^{k} \phi^{\prime}-\frac{1}{4} \partial\left[\phi^{i} \phi^{j} \phi^{k} \phi^{\prime}\right]$ yielding

$$
\gamma\left[T^{i}-T^{i+1}\right]=\left(g_{\sigma}^{*} \pi\right)^{2} \frac{3}{N-1}
$$

Improve $\widehat{\mathfrak{V i v}} \subseteq W \subset \mathfrak{V i x}^{N}$ by checking S_{N} singlets which are $\widehat{\mathfrak{V i r}}$ primaries at higher spin.

Lifting of currents

T^{i} goes with $V^{i} \equiv \sum_{(j<k<1) \neq i}\left[\partial \phi^{i}\right] \phi^{j} \phi^{k} \phi^{\prime}-\frac{1}{4} \partial\left[\phi^{i} \phi^{j} \phi^{k} \phi^{\prime}\right]$ yielding

$$
\gamma\left[T^{i}-T^{i+1}\right]=\left(g_{\sigma}^{*} \pi\right)^{2} \frac{3}{N-1}
$$

Improve $\widehat{\mathfrak{V i r}} \subseteq W \subset \mathfrak{V i x}^{N}$ by checking S_{N} singlets which are $\widehat{\mathfrak{V i r}}$ primaries at higher spin.

$$
\begin{aligned}
& T_{4}|0\rangle=\left[\sum_{i} L_{-4}^{i}-\frac{5}{3} \sum_{i}\left(L_{-2}^{i}\right)^{2}+\frac{18}{N-1} \sum_{i<j} L_{-2}^{i} L_{-2}^{j}\right]|0\rangle \Rightarrow \\
& \gamma\left[T_{4}\right]=\left(g_{\sigma}^{*} \pi\right)^{2} \frac{5 N+22}{2 N(N-1)}
\end{aligned}
$$

because rows of 1×2 matrix $\left\langle T_{4}^{\prime} V_{3}^{J} \sigma\right\rangle$ are linearly independent.

Check over 1 CPU day

The number of (currents, potential divergences):

	4	5	6	7
4	$(1,1)$	$(1,2)$	$(1,2)$	$(1,2)$
6	$(2,2)$	$(2,5)$	$(2,6)$	$(2,6)$
8	$(4,7)$	$(4,17)$	$(4,22)$	$(4,23)$
10	$(5,18)$	$(7,50)$	$(7,69)$	$(7,75)$

Check over 1 CPU day

The number of (currents, potential divergences):

	N	5	6	7
4	$(1,1)$	$(1,2)$	$(1,2)$	$(1,2)$
6	$(2,2)$	$(2,5)$	$(2,6)$	$(2,6)$
8	$(4,7)$	$(4,17)$	$(4,22)$	$(4,23)$
10	$(5,18)$	$(7,50)$	$(7,69)$	$(7,75)$

For $N=4,2 \times 2$ matrix $\left\langle T_{6}^{\prime} V_{5}^{J} \sigma\right\rangle$ is singular signalling W -algebra with spin 6 [Blumenhagen, Flohr, Kliem, Nahm, Recknagel, Varrhagen; 91] .

Check over 1 CPU day

The number of (currents, potential divergences):

	N	5	6	7
4	$(1,1)$	$(1,2)$	$(1,2)$	$(1,2)$
6	$(2,2)$	$(2,5)$	$(2,6)$	$(2,6)$
8	$(4,7)$	$(4,17)$	$(4,22)$	$(4,23)$
10	$(5,18)$	$(7,50)$	$(7,69)$	$(7,75)$

For $N=4,2 \times 2$ matrix $\left\langle T_{6}^{\prime} V_{5}^{J} \sigma\right\rangle$ is singular signalling W -algebra with spin 6 [Blumenhagen, Flohr, Kliem, Nahm, Recknagel, Varnhagen; 91] .
For $N>4$, all of the above lifts :).

Check over 1 CPU day

The number of (currents, potential divergences):

	N	5	6	7
4	$(1,1)$	$(1,2)$	$(1,2)$	$(1,2)$
6	$(2,2)$	$(2,5)$	$(2,6)$	$(2,6)$
8	$(4,7)$	$(4,17)$	$(4,22)$	$(4,23)$
10	$(5,18)$	$(7,50)$	$(7,69)$	$(7,75)$

For $N=4,2 \times 2$ matrix $\left\langle T_{6}^{\prime} V_{5}^{J} \sigma\right\rangle$ is singular signalling W -algebra with spin 6 [Blumenhagen, Flohr, Kliem, Nahm, Recknagel, Varrhagen; 91] .
For $N>4$, all of the above lifts :).

- Should determine conformal window non-perturbatively.
- For $N=4$, check if W-algebra is $\mathcal{W}(2,6)$.
- Consider S_{N} breaking flows e.g. \mathbb{Z}_{N} as in 3d [LeClair, Ludwig, Mussardo; 97] .
- Couple $\mathcal{W}\left[\mathfrak{d}_{n}\right]$ minimal models [Dotsenko, Nguyen, Santachiara; 01].

