A very brief history of quantum field theory

Connor Behan

Yang Institute for Theoretical Physics, Stony Brook NY, 11794 USA

2019-05-22

Birth of modern physics

Triumphs of physics before 1905:
(1) Newton's laws of motion
(2) Newton's law of gravitation
(3) Lorentz force law
(9) Maxwell's equations

Birth of modern physics

Triumphs of physics before 1905:
(1) Newton's laws of motion
(2) Newton's law of gravitation
(3) Lorentz force law
(9) Maxwell's equations

Birth of modern physics

Triumphs of physics before 1905:
(1) Newton's laws of motion
(2) Newton's law of gravitation
(3) Lorentz force law
(9) Maxwell's equations

$$
\begin{aligned}
\nabla \cdot \mathbf{E}=4 \pi \rho & , \quad \nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B}=0 & , \quad \nabla \times \mathbf{B}=\frac{1}{c}\left(4 \pi \mathbf{J}+\frac{\partial \mathbf{E}}{\partial t}\right)
\end{aligned}
$$

Birth of modern physics

Triumphs of physics before 1905:
(1) Newton's laws of motion
(2) Newton's law of gravitation
(3) Lorentz force law
(9) Maxwell's equations

$$
\begin{aligned}
& \nabla \cdot \mathbf{E}=4 \pi \rho, \\
& \nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \cdot \mathbf{B}=0, \quad \nabla \times \mathbf{B}=\frac{1}{c}\left(4 \pi \mathbf{J}+\frac{\partial \mathbf{E}}{\partial t}\right)
\end{aligned}
$$

These provide a hint towards relativity:

$$
(\Delta s)^{2}=(c \Delta t)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}
$$

Birth of modern physics

Triumphs of physics before 1905:
(1) Newton's laws of motion
(2) Newton's law of gravitation
(3) Lorentz force law
(9) Maxwell's equations

$$
\begin{aligned}
& \nabla \cdot \mathbf{E}=4 \pi \rho, \\
& \nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \cdot \mathbf{B}=0, \quad \nabla \times \mathbf{B}=\frac{1}{c}\left(4 \pi \mathbf{J}+\frac{\partial \mathbf{E}}{\partial t}\right)
\end{aligned}
$$

These provide a hint towards relativity:

$$
\begin{aligned}
(\Delta s)^{2} & =(c \Delta t)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2} \\
m^{2} c^{4} & =E^{2}-\left(c p_{x}\right)^{2}-\left(c p_{y}\right)^{2}-\left(c p_{z}\right)^{2}
\end{aligned}
$$

Enter the quantum

Particle	Field
Photon γ	Electromagnetic A_{μ}
Electron e^{-}	Dirac ψ

Enter the quantum

Particle	Field
Photon γ	Electromagnetic A_{μ}
Electron e^{-}	Dirac ψ

Enter the quantum

Particle	Field
Photon γ	Electromagnetic A_{μ}
Electron e^{-}	Dirac ψ

Dirac field satisfies $i \gamma^{\mu} \partial_{\mu} \psi-m \psi=0$ where γ^{μ} is a 4×4 matrix.

Enter the quantum

Particle	Field
Photon γ	Electromagnetic A_{μ}
Electron e^{-}	Dirac ψ

Dirac field satisfies $i \gamma^{\mu} \partial_{\mu} \psi-m \psi=0$ where γ^{μ} is a 4×4 matrix.

Enter the quantum

Particle	Field
Photon γ	Electromagnetic A_{μ}
Electron e^{-}	Dirac ψ

Dirac field satisfies $i \gamma^{\mu} \partial_{\mu} \psi-m \psi=0$ where γ^{μ} is a 4×4 matrix.

Positron discovered experimentally in 1932.
Quantum electrodynamics successfully formulated in 1950.

Lingering doubts

Lingering doubts

Lingering doubts

Many proposed QFTs had the same high energy behavior as QED.

$$
g_{Q E D}(E)=\frac{g\left(E_{0}\right)}{1-\frac{2}{3} \log \left(\frac{E}{E_{0}}\right) g\left(E_{0}\right)}
$$

Lingering doubts

Many proposed QFTs had the same high energy behavior as QED.
$g_{Q E D}(E)=\frac{g\left(E_{0}\right)}{1-\frac{2}{3} \log \left(\frac{E}{E_{0}}\right) g\left(E_{0}\right)}, g_{Q C D}(E)=\frac{g\left(E_{0}\right)}{1+9 \log \left(\frac{E}{E_{0}}\right) g\left(E_{0}\right)}$
Coleman suggested this problem to his student Politzer.

Lingering doubts

Many proposed QFTs had the same high energy behavior as QED.

$$
g_{Q E D}(E)=\frac{g\left(E_{0}\right)}{1-\frac{2}{3} \log \left(\frac{E}{E_{0}}\right) g\left(E_{0}\right)}, g_{Q C D}(E)=\frac{g\left(E_{0}\right)}{1+9 \log \left(\frac{E}{E_{0}}\right) g\left(E_{0}\right)}
$$

Coleman suggested this problem to his student Politzer.

Ultraviolet Behavior of Non-Abelian Gauge Theories**
David J. Gross \dagger and Frank Wilczek
Joseph Henry Laboratories, Princeton University, Princetom, New Jersey 08540 (Received 27 April 1973)

It is shown that a wide class of non-Abelian gauge theories have, up to calculable logarithmic corrections, free-field-theory asymptotic behavior. It is suggested that Bjorken scaling may be obtained from strong-interaction dynamics based on non-Abelian gauge symmetry.

Reliable Perturbative Results for Strong Interactions?*

H. David Politzer

Jefferson Physical Labonatories, Harvard University, Cambridge, Massachusetts 02138 (Recelved 3 May 1973)

An explicit calculation shows perturbation theory to be arbitrarily good for the deep Euclidean Green's functions of any Yang-Mills theory and of many Yang-Mills theorles with fermions. Under the hypothesis that spontaneous symmetry breakdown is of dynamical origin, these symmetric Green's functions are the asymptotic forms of the physically significant spontaneously broken solution, whose coupling could be strong.

A feature, not a bug

A feature, not a bug

In 1964, Higgs boson proposal used ideas of superconductivity.

A feature, not a bug

In 1964, Higgs boson proposal used ideas of superconductivity.

A completion of QED might include these interactions.

A feature, not a bug

In 1964, Higgs boson proposal used ideas of superconductivity.

A completion of QED might include these interactions.

Going to $E \ll E_{0}$ means $g_{2}(E), g_{3}(E) \rightarrow 0$.

A feature, not a bug

In 1964, Higgs boson proposal used ideas of superconductivity.

A completion of QED might include these interactions.

Going to $E \ll E_{0}$ means $g_{2}(E), g_{3}(E) \rightarrow 0$.

[Oleaga, Salazar, Bunkov; 2014]
[Donnelly, Barenghi; 1998]

Exploring the landscape

Solving the (special) endpoints will reveal all paths going between them.

Exploring the landscape

Solving the (special) endpoints will reveal all paths going between them.

- Exact solution of many fixed points in two dimensions.
[Belavin, Polyakov, Zamolodchikov; 1984]

Exploring the landscape

Solving the (special) endpoints will reveal all paths going between them.

- Exact solution of many fixed points in two dimensions.
[Belavin, Polyakov, Zamolodchikov; 1984]
- Carving out theory space numerically in all dimensions.
[Rattazzi, Rychkov, Tonni, Vichi; 0807.0004]

Exploring the landscape

Solving the (special) endpoints will reveal all paths going between them.

- Exact solution of many fixed points in two dimensions.
[Belavin, Polyakov, Zamolodchikov; 1984]
- Carving out theory space numerically in all dimensions.
[Rattazzi, Rychkov, Tonni, Vichi; 0807.0004]
- Application to quantum gravity.
[Hellerman; 0902.2790]
[Heemskerk, Penedones, Polchinski, Sully; 0907.0151]

Exploring the landscape

Solving the (special) endpoints will reveal all paths going between them.

- Exact solution of many fixed points in two dimensions.
[Belavin, Polyakov, Zamolodchikov; 1984]
- Carving out theory space numerically in all dimensions.
[Rattazzi, Rychkov, Tonni, Vichi; 0807.0004]
- Application to quantum gravity.
[Hellerman; 0902.2790]
[Heemskerk, Penedones, Polchinski, Sully; 0907.0151]
- New solvable limits.
[Fitzpatrick, Kaplan, Poland, Simmons-Duffin; 1212.3616]
[Komargodski, Zhiboedov; 1212.4103]

Exploring the landscape

Solving the (special) endpoints will reveal all paths going between them.

- Exact solution of many fixed points in two dimensions.
[Belavin, Polyakov, Zamolodchikov; 1984]
- Carving out theory space numerically in all dimensions.
[Rattazzi, Rychkov, Tonni, Vichi; 0807.0004]
- Application to quantum gravity.
[Hellerman; 0902.2790]
[Heemskerk, Penedones, Polchinski, Sully; 0907.0151]
- New solvable limits.
[Fitzpatrick, Kaplan, Poland, Simmons-Duffin; 1212.3616] [Komargodski, Zhiboedov; 1212.4103]
- Application to a line of fixed points.
[Beem, Rastelli, Van Rees; 1304.1803]

Enjoy the rest of the talks!

