# Bootstrapping the Long-Range Ising Model 

Connor Behan

NUMSTRINGS, ICTS, Bangalore 2018-02-03

1703.03430, 1703.05325 with L. Rastelli, S. Rychkov, B. Zan 180x.xxxxx upcoming

## The model

$$
H_{L R I}=-J \sum_{i \neq j} \frac{\sigma_{i} \sigma_{j}}{|i-j|^{d+s}}
$$

- Known to have a second-order phase transition in $1 \leq d<4$ [Dyson; 69].
- Possible to study with a $\phi^{4}$ interaction [Fisher, Ma, Nickel; 72].
- Critical exponents are non-trivial functions of $s$ for $\frac{d}{2}<s<s_{*}$ [Sak; 73].
- 1D and 2D estimates have been found by Monte Carlo [Angelini, Parisi, Ricci-Tersenghi; 1401.6805].
- Fixed point is known to be conformal [Paulos, Rychkov, van Rees, Zan; 1509.00008].


## Continuum description

$$
S=\iint-\frac{\phi(x) \phi(y)}{|x-y|^{d+s}} d y+\frac{\lambda}{4!} \phi(x)^{4} d x
$$

Coupling is classically marginal for $s=\frac{d}{2} \Longrightarrow$ perturb in $\epsilon=2 s-d$.

## Continuum description

$$
S=\iint-\frac{\phi(x) \phi(y)}{|x-y|^{d+s}} d y+\frac{\lambda}{4!} \phi(x)^{4} d x
$$

Coupling is classically marginal for $s=\frac{d}{2} \Longrightarrow$ perturb in $\epsilon=2 s-d$.


$$
=-\frac{\lambda^{2}}{6(4 \pi)^{d}} \frac{\Gamma\left(\frac{3 \epsilon+d}{4}\right) \Gamma\left(\frac{3 \epsilon-d}{4}\right)}{\Gamma\left(\frac{\epsilon+d}{4}\right) \Gamma\left(\frac{3 d}{4}\right)}|k|^{-(d+3 \epsilon) / 2}
$$

## Continuum description

$$
S=\iint-\frac{\phi(x) \phi(y)}{|x-y|^{d+s}} d y+\frac{\lambda}{4!} \phi(x)^{4} d x
$$

Coupling is classically marginal for $s=\frac{d}{2} \Longrightarrow$ perturb in $\epsilon=2 s-d$.


At all loop orders we expect $\Delta_{\phi}=\frac{d-s}{2}$, proven rigorously in [Lohmann, Slade, Wallace; 1705.08540].

|  | $s=\frac{d}{2}$ | $s=s_{*}$ |
| :---: | :---: | :---: |
| $\Delta_{\phi}$ | $\frac{d}{4}$ | $\frac{d-s_{*}}{2} \equiv \Delta_{\sigma}^{S R I}$ |
| $\Delta_{\phi^{2}}$ | $\frac{d}{2}$ | $\Delta_{\epsilon}^{S R I}$ |
| $\Delta_{T}$ | $\frac{d+4}{2}$ | $d$ |



Fixed line allowed by single correlator bound of
[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi; 12].


Fixed line allowed by single correlator bound of
[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi; 12].


Fixed line allowed by single correlator bound of [El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi; 12].
Disallowed by [Kos, Poland, Simmons-Duffin; 14].

## The third relevant scalar

- In the usual Wilson-Fisher fixed point, $\partial^{2} \phi=\frac{\lambda}{3!} \phi^{3}$. $\phi^{3}$ is a descendant because $\partial^{2}$ is a conformal generator.


## The third relevant scalar

- In the usual Wilson-Fisher fixed point, $\partial^{2} \phi=\frac{\lambda}{3!} \phi^{3}$. $\phi^{3}$ is a descendant because $\partial^{2}$ is a conformal generator.
- Instead, our EOM is nonlocal: $\partial^{s} \phi=\frac{\lambda}{3!} \phi^{3}$. $\phi^{3}$ is a primary constrained to have $\Delta_{\phi^{3}}=\frac{d+s}{2}$.


## The third relevant scalar

- In the usual Wilson-Fisher fixed point, $\partial^{2} \phi=\frac{\lambda}{3!} \phi^{3}$. $\phi^{3}$ is a descendant because $\partial^{2}$ is a conformal generator.
- Instead, our EOM is nonlocal: $\partial^{5} \phi=\frac{\lambda}{3!} \phi^{3}$. $\phi^{3}$ is a primary constrained to have $\Delta_{\phi^{3}}=\frac{d+s}{2}$.

$$
n_{3}(s) \phi^{3}(x)=\int \frac{n_{1}(s) \phi(y)}{|x-y|^{d+s}} d y
$$

Insert this into $\left\langle\phi^{3}(x) \Phi_{2}(y) \Phi_{1}(z)\right\rangle$ to find

$$
\frac{\lambda_{12 \phi^{3}}}{\lambda_{12 \phi}}=\frac{\pi^{d / 2} n_{1}(s)}{n_{3}(s)} \frac{\Gamma\left(\Delta_{\phi}-\frac{d}{2}\right) \Gamma\left(\frac{\Delta_{\phi^{3}}+\Delta_{12}}{2}\right) \Gamma\left(\frac{\Delta_{\phi^{3}}-\Delta_{12}}{2}\right)}{\Gamma\left(\Delta_{\phi^{3}}\right) \Gamma\left(\frac{\Delta_{\phi}+\Delta_{12}}{2}\right) \Gamma\left(\frac{\Delta_{\phi}-\Delta_{12}}{2}\right)} \equiv \frac{n_{1}(s)}{n_{3}(s)} R_{12}
$$

## The third relevant scalar

- In the usual Wilson-Fisher fixed point, $\partial^{2} \phi=\frac{\lambda}{3!} \phi^{3}$. $\phi^{3}$ is a descendant because $\partial^{2}$ is a conformal generator.
- Instead, our EOM is nonlocal: $\partial^{s} \phi=\frac{\lambda}{3!} \phi^{3}$. $\phi^{3}$ is a primary constrained to have $\Delta_{\phi^{3}}=\frac{d+s}{2}$.

$$
n_{3}(s) \phi^{3}(x)=\int \frac{n_{1}(s) \phi(y)}{|x-y|^{d+s}} d y
$$

Insert this into $\left\langle\phi^{3}(x) \Phi_{2}(y) \Phi_{1}(z)\right\rangle$ to find

$$
\frac{\lambda_{12 \phi^{3}}}{\lambda_{12 \phi}}=\frac{\pi^{d / 2} n_{1}(s)}{n_{3}(s)} \frac{\Gamma\left(\Delta_{\phi}-\frac{d}{2}\right) \Gamma\left(\frac{\Delta_{\phi^{3}}+\Delta_{12}}{2}\right) \Gamma\left(\frac{\Delta_{\phi^{3}}-\Delta_{12}}{2}\right)}{\Gamma\left(\Delta_{\phi^{3}}\right) \Gamma\left(\frac{\Delta_{\phi}+\Delta_{12}}{2}\right) \Gamma\left(\frac{\Delta_{\phi}-\Delta_{12}}{2}\right)} \equiv \frac{n_{1}(s)}{n_{3}(s)} R_{12}
$$

Cancelling normalizations gives the nonperturbative ratio $\frac{\lambda_{12 \phi^{3}}}{\lambda_{12 \phi}} / \frac{\lambda_{34 \phi^{3}}}{\lambda_{34 \phi}}=R_{12} / R_{34}$.

## Dual description

$$
\begin{aligned}
S_{1}[\phi] & =\int \frac{1}{2} \phi \partial^{s} \phi+\frac{\lambda}{4!} \phi^{4} d x \\
S_{2}[\sigma, \chi] & =S_{S R I}[\sigma]+\int \frac{1}{2} \chi \partial^{-s} \chi+g \sigma \chi d x
\end{aligned}
$$

Instead of $\epsilon=2 s-d$, we can expand in $\delta=\frac{1}{2}\left(s_{*}-s\right)$.

## Dual description

$$
\begin{aligned}
S_{1}[\phi] & =\int \frac{1}{2} \phi \partial^{s} \phi+\frac{\lambda}{4!} \phi^{4} d x \\
S_{2}[\sigma, \chi] & =S_{S R I}[\sigma]+\int \frac{1}{2} \chi \partial^{-s} \chi+g \sigma \chi d x
\end{aligned}
$$

Instead of $\epsilon=2 s-d$, we can expand in $\delta=\frac{1}{2}\left(s_{*}-s\right)$. Duality passes many checks [B, Rastelli, Rychkov, Zan; 1703.05325].

$$
\begin{aligned}
\Delta_{\phi}=\frac{d-s}{2} & =\Delta_{\sigma} \\
\Delta_{\phi^{3}} & =\frac{d+s}{2}
\end{aligned}=\Delta_{\chi}, \lambda_{12 \phi^{3} \lambda_{34 \phi}}^{\lambda_{12 \phi} \lambda_{34 \phi^{3}}}=\frac{R_{12}}{R_{34}}=\frac{\lambda_{12 \chi} \lambda_{34 \sigma}}{\lambda_{12 \sigma} \lambda_{34 \chi}}
$$

Picture also resolves the loss of a stress tensor $-T_{\mu \nu}$ recombines with $\Delta_{\sigma} \sigma \partial_{\nu} \chi-\Delta_{\chi} \chi \partial_{\nu} \sigma$.

## Crossing equations

For a correlator of scalars,

$$
\begin{aligned}
\left\langle\phi_{i}\left(x_{1}\right) \phi_{j}\left(x_{2}\right) \phi_{k}\left(x_{3}\right) \phi_{l}\left(x_{4}\right)\right\rangle & =\left(\frac{\left|x_{24}\right|}{\left|x_{14}\right|}\right)^{\Delta_{i j}}\left(\frac{\left|x_{11}\right|}{\left|x_{13}\right|}\right)^{\Delta_{k l}} \frac{G(u, v)}{\left|x_{12}\right|^{\Delta_{i}+\Delta_{j}\left|x_{34}\right|^{\Delta_{k}+\Delta_{l}}}} \\
G(u, v) & =\sum_{\mathcal{O}} \lambda_{i j \mathcal{O}} \lambda_{k l \mathcal{O}} g_{\mathcal{O}_{i j}, \Delta_{k l}}(u, v)
\end{aligned}
$$

## Crossing equations

For a correlator of scalars,

$$
\begin{aligned}
\left\langle\phi_{i}\left(x_{1}\right) \phi_{j}\left(x_{2}\right) \phi_{k}\left(x_{3}\right) \phi_{l}\left(x_{4}\right)\right\rangle & =\left(\frac{\left|x_{24}\right|}{\left|x_{14}\right|}\right)^{\Delta_{i j}}\left(\frac{\left|x_{11}\right|}{\left|x_{13}\right|}\right)^{\Delta_{k l}} \frac{G(u, v)}{\left|x_{12}\right|^{\Delta_{i}+\Delta_{j}\left|x_{34}\right|^{\Delta_{k}+\Delta_{l}}}} \\
G(u, v) & =\sum_{\mathcal{O}} \lambda_{i j \mathcal{O}} \lambda_{k l \mathcal{O}} g_{\mathcal{O}}^{\Delta_{i j}, \Delta_{k l}}(u, v)
\end{aligned}
$$

crossing equations are

$$
\begin{aligned}
& \sum_{\mathcal{O}}\left[\lambda_{i j \mathcal{O}} \lambda_{k l \mathcal{O}} F_{\mp, \mathcal{O}}^{i j ; k l}(u, v) \pm \lambda_{k j \mathcal{O}} \lambda_{i / \mathcal{O}} F_{\mp ; \mathcal{O}}^{k j ; i l}(u, v)\right]=0 \\
& F_{ \pm, \mathcal{O}}^{i j ; k l}=v^{\frac{\Delta_{k}+\Delta_{j}}{2}} g_{\mathcal{O}}^{\Delta_{i j}, \Delta_{k l}}(u, v) \pm u^{\frac{\Delta_{k}+\Delta_{j}}{2}} g_{\mathcal{O}}^{\Delta_{i j}, \Delta_{k l}}(v, u) .
\end{aligned}
$$

## Crossing equations

For a correlator of scalars,

$$
\begin{aligned}
\left\langle\phi_{i}\left(x_{1}\right) \phi_{j}\left(x_{2}\right) \phi_{k}\left(x_{3}\right) \phi_{l}\left(x_{4}\right)\right\rangle & =\left(\frac{\left|x_{24}\right|}{\left|x_{14}\right|}\right)^{\Delta_{i j}}\left(\frac{\left|x_{14}\right|}{\left|x_{13}\right|}\right)^{\Delta_{k l}} \frac{G(u, v)}{\left|x_{12}\right|^{\Delta_{i}+\Delta_{j}\left|x_{34}\right|^{\Delta_{k}+\Delta_{l}}}} \\
G(u, v) & =\sum_{\mathcal{O}} \lambda_{i j \mathcal{O}} \lambda_{k l \mathcal{O}} g_{\mathcal{O}}^{\Delta_{i j}, \Delta_{k l}}(u, v)
\end{aligned}
$$

crossing equations are

$$
\begin{aligned}
& \sum_{\mathcal{O}}\left[\lambda_{i j \mathcal{O}} \lambda_{k l \mathcal{O}} F_{\mp, \mathcal{O}}^{i j ; k l}(u, v) \pm \lambda_{k j \mathcal{O}} \lambda_{i / \mathcal{O}} F_{\mp ; \mathcal{O}}^{k j ; i l}(u, v)\right]=0 \\
& F_{ \pm, \mathcal{O}}^{i j ; k l}=v^{\frac{\Delta_{k}+\Delta_{j}}{2}} g_{\mathcal{O}}^{\Delta_{i j}, \Delta_{k l}}(u, v) \pm u^{\frac{\Delta_{k}+\Delta_{j}}{2}} g_{\mathcal{O}}^{\Delta_{i j}, \Delta_{k l}}(v, u) .
\end{aligned}
$$

We consider 6 of the 9 combinations:

$$
\begin{aligned}
& \langle\sigma \sigma \sigma \sigma\rangle,\langle\epsilon \epsilon \epsilon \epsilon\rangle,\langle\chi \chi \chi \chi\rangle \\
& \langle\sigma \sigma \epsilon \epsilon\rangle,\langle\sigma \sigma \chi \chi\rangle,\langle\epsilon \epsilon \chi \chi\rangle
\end{aligned}
$$

## Crossing equations

For each identical correlator:

$$
\sum_{\mathcal{O}} \lambda_{i i \mathcal{O}}^{2} F_{-, \mathcal{O}}^{i i ; i i}(u, v)=0
$$

## Crossing equations

For each identical correlator:

$$
\sum_{\mathcal{O}} \lambda_{i i \mathcal{O}}^{2} F_{-, \mathcal{O}}^{i i ; i i}(u, v)=0
$$

For each mixed correlator:

$$
\begin{aligned}
& \sum_{\mathcal{O}} \lambda_{i j \mathcal{O}}^{2} F_{-, \mathcal{O}}^{i j ; i j}(u, v)=0 \\
& \sum_{\mathcal{O}} \lambda_{i i \mathcal{O}} \lambda_{j j \mathcal{O}} F_{-, \mathcal{O}}^{i i ; j j}(u, v)+\sum_{\mathcal{O}}(-1)^{\ell} \lambda_{i j \mathcal{O}}^{2} F_{-, \mathcal{O}}^{j i ; i j}(u, v)=0 \\
& \sum_{\mathcal{O}} \lambda_{i i \mathcal{O}} \lambda_{j j \mathcal{O}} F_{+, \mathcal{O}}^{i i ; j j}(u, v)-\sum_{\mathcal{O}}(-1)^{\ell} \lambda_{i j \mathcal{O}}^{2} F_{+, \mathcal{O}}^{j i ; i j}(u, v)=0
\end{aligned}
$$

Gives equations labelled by $n=1, \ldots, 12$.

## Crossing equations

$$
\begin{aligned}
& \sum_{\mathcal{O}+2 \mid \ell}\left[\lambda_{\sigma \sigma \mathcal{O}} \lambda_{\epsilon \epsilon \mathcal{O}} \lambda_{\chi \chi \mathcal{O}}\right] A_{\Delta, \ell}^{n}\left[\begin{array}{c}
\lambda_{\sigma \sigma \mathcal{O}} \\
\lambda_{\epsilon \mathcal{O}} \\
\lambda_{\chi \chi \mathcal{O}}
\end{array}\right] \\
& +\sum_{\mathcal{O -}} \lambda_{\sigma \epsilon \mathcal{O}}^{2} B_{\Delta, \ell}^{n}+\sum_{\mathcal{O}-} \lambda_{\epsilon \chi \mathcal{O}}^{2} C_{\Delta, \ell}^{n}+\sum_{\mathcal{O}+} \lambda_{\sigma \chi \mathcal{O}}^{2} D_{\Delta, \ell}^{n}=0
\end{aligned}
$$

## Crossing equations

$$
\begin{aligned}
& \sum_{\mathcal{O}+2 \mid \ell}\left[\lambda_{\sigma \sigma \mathcal{O}} \lambda_{\epsilon \epsilon \mathcal{O}} \lambda_{\chi \chi \mathcal{O}}\right] A_{\Delta, \ell}^{n}\left[\begin{array}{c}
\lambda_{\sigma \sigma \mathcal{O}} \\
\lambda_{\epsilon \mathcal{O}} \\
\lambda_{\chi \chi \mathcal{O}}
\end{array}\right] \\
& +\sum_{\mathcal{O -}} \lambda_{\sigma \epsilon \mathcal{O}}^{2} B_{\Delta, \ell}^{n}+\sum_{\mathcal{O}-} \lambda_{\epsilon \chi \mathcal{O}}^{2} C_{\Delta, \ell}^{n}+\sum_{\mathcal{O}+} \lambda_{\sigma \chi \mathcal{O}}^{2} D_{\Delta, \ell}^{n}=0
\end{aligned}
$$

Search for functional $\alpha$ satisfying:

$$
\begin{aligned}
& \alpha\left(A_{\Delta, \ell}^{n}\right) \geq 0 \\
& \alpha\left(B_{\Delta, \ell}^{n}\right) \geq 0 \\
& \alpha\left(C_{\Delta, \ell}^{n}\right) \geq 0 \\
& \alpha\left(D_{\Delta, \ell}^{n}\right) \geq 0
\end{aligned}
$$

Demand these for $\Delta \in\left[\Delta_{\text {unitary }}, \infty\right)$ when $\ell=1,2,3, \ldots$ or $\Delta \in\left\{\Delta_{\sigma}, \Delta_{\epsilon}, \Delta_{\chi}\right\} \cup[3, \infty)$ when $\ell=0$.


Bound should become more restrictive as the minimum dimension for spin-2 operators goes from 3 to 3.5 .


No interesting features but we have not yet imposed $\lambda_{\sigma \epsilon \chi}^{2}=\frac{R_{\chi \epsilon}}{R_{\sigma \epsilon}} \lambda_{\sigma \sigma \epsilon} \lambda_{\chi \chi \epsilon}$.


No interesting features for $\Delta_{T}^{m i n}=3.1,3.2,3.3$ but there is a kink for 3.4 !


With less truncation, there are kinks at $\Delta_{T}^{m i n} \leq 3.3$ having good agreement with the $\varepsilon$-expansion.


With less truncation, there are kinks at $\Delta_{T}^{m i n} \leq 3.3$ having good agreement with the $\varepsilon$-expansion.


With less truncation, there are kinks at $\Delta_{T}^{m i n} \leq 3.3$ having good agreement with the $\varepsilon$-expansion.





## Conclusions

- It is easy for nonlocal CFTs to exist in continuous families.
- 3D long-range Ising models occupy special points in the regions allowed by six four-point functions.
- Extension to long-range $O(N)$ models should be straightforward.
- Some features of a full solution are still missing.


## Conclusions

- It is easy for nonlocal CFTs to exist in continuous families.
- 3D long-range Ising models occupy special points in the regions allowed by six four-point functions.
- Extension to long-range $O(N)$ models should be straightforward.
- Some features of a full solution are still missing.

Spin-2 operator could be added to the system of correlators [Dymarsky, Kos, Kravchuk, Poland, Simmons-Duffin; 1708.05718].
Finding kinks could still be possible in 2D
[Paulos, Penedones, Toledo, van Rees, Vieira; 1708.06765].
Analytic bootstrap techniques might accomodate these theories [Fitzpatrick, Kaplan, Poland, Simmons-Duffin; Komargodski, Zhiboedov; Gopakumar, Kaviraj, Sen, Sinha; Alday, Caron-Huot].

