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The model

HLRI = −J
∑

i 6=j

σiσj
|i − j |d+s

• Known to have a second-order phase transition in 1 ≤ d < 4
[Dyson; 69].

• Possible to study with a φ4 interaction
[Fisher, Ma, Nickel; 72].

• Critical exponents are non-trivial functions of s for d
2 < s < s∗

[Sak; 73].

• 1D and 2D estimates have been found by Monte Carlo
[Angelini, Parisi, Ricci-Tersenghi; 1401.6805].

• Fixed point is known to be conformal
[Paulos, Rychkov, van Rees, Zan; 1509.00008].
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Continuum description

S =

∫ ∫

−
φ(x)φ(y)

|x − y |d+s
dy +

λ

4!
φ(x)4dx

Coupling is classically marginal for s = d
2 =⇒ perturb in

ǫ = 2s − d .
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At all loop orders we expect ∆φ = d−s
2 , proven rigorously in

[Lohmann, Slade, Wallace; 1705.08540].

s = d
2 s = s∗

∆φ
d
4

d−s∗
2 ≡ ∆SRI

σ

∆φ2
d
2 ∆SRI

ǫ

∆T
d+4
2 d
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[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi; 12].
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PSfrag replacements
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Fixed line allowed by single correlator bound of
[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi; 12].
Disallowed by [Kos, Poland, Simmons-Duffin; 14].
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Cancelling normalizations gives the nonperturbative ratio
λ12φ3

λ12φ
/
λ34φ3

λ34φ
= R12/R34.
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Dual description

S1[φ] =

∫
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4!
φ4dx

S2[σ, χ] = SSRI [σ] +

∫
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2
χ∂−sχ+ gσχdx

Instead of ǫ = 2s − d , we can expand in δ = 1
2(s∗ − s).
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S2[σ, χ] = SSRI [σ] +

∫

1

2
χ∂−sχ+ gσχdx

Instead of ǫ = 2s − d , we can expand in δ = 1
2(s∗ − s). Duality

passes many checks [B, Rastelli, Rychkov, Zan; 1703.05325].

∆φ = d−s
2 = ∆σ

∆φ3 = d+s
2 = ∆χ

λ12φ3λ34φ

λ12φλ34φ3

= R12
R34

=
λ12χλ34σ

λ12σλ34χ

Picture also resolves the loss of a stress tensor — Tµν recombines
with ∆σσ∂νχ−∆χχ∂νσ.
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Crossing equations
For a correlator of scalars,

〈φi(x1)φj (x2)φk(x3)φl(x4)〉 =
(

|x24|
|x14|

)∆ij
(

|x14|
|x13|

)∆kl G(u,v)

|x12|
∆i+∆j |x34|

∆k+∆l

G (u, v) =
∑

O λijOλklO g
∆ij ,∆kl

O (u, v)
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We consider 6 of the 9 combinations:

〈σσσσ〉 , 〈ǫǫǫǫ〉 , 〈χχχχ〉

〈σσǫǫ〉 , 〈σσχχ〉 , 〈ǫǫχχ〉
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Crossing equations

For each identical correlator:

∑

O

λ2
iiOF

ii ;ii
−,O(u, v) = 0

For each mixed correlator:

∑

O

λ2
ijOF

ij ;ij
−,O(u, v) = 0

∑

O

λiiOλjjOF
ii ;jj
−,O(u, v) +

∑

O

(−1)ℓλ2
ijOF

ji ;ij
−,O(u, v) = 0

∑

O

λiiOλjjOF
ii ;jj
+,O(u, v)−

∑

O

(−1)ℓλ2
ijOF

ji ;ij
+,O(u, v) = 0

Gives equations labelled by n = 1, . . . , 12.
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Search for functional α satisfying:

α(An
∆,ℓ) � 0

α(Bn
∆,ℓ) ≥ 0

α(Cn
∆,ℓ) ≥ 0

α(Dn
∆,ℓ) ≥ 0

Demand these for ∆ ∈ [∆unitary ,∞) when ℓ = 1, 2, 3, . . . or
∆ ∈ {∆σ,∆ǫ,∆χ} ∪ [3,∞) when ℓ = 0.
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Bound should become more restrictive as the minimum dimension
for spin-2 operators goes from 3 to 3.5.
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No interesting features but we have not yet imposed
λ2
σǫχ =

Rχǫ

Rσǫ
λσσǫλχχǫ.
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No interesting features for ∆min
T = 3.1, 3.2, 3.3 but there is a kink

for 3.4!
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With less truncation, there are kinks at ∆min
T ≤ 3.3 having good

agreement with the ε-expansion.
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Conclusions

• It is easy for nonlocal CFTs to exist in continuous families.

• 3D long-range Ising models occupy special points in the
regions allowed by six four-point functions.

• Extension to long-range O(N) models should be
straightforward.

• Some features of a full solution are still missing.



Old results Setup New results

Conclusions

• It is easy for nonlocal CFTs to exist in continuous families.

• 3D long-range Ising models occupy special points in the
regions allowed by six four-point functions.

• Extension to long-range O(N) models should be
straightforward.

• Some features of a full solution are still missing.

Spin-2 operator could be added to the system of correlators
[Dymarsky, Kos, Kravchuk, Poland, Simmons-Duffin; 1708.05718].
Finding kinks could still be possible in 2D
[Paulos, Penedones, Toledo, van Rees, Vieira; 1708.06765].
Analytic bootstrap techniques might accomodate these theories
[Fitzpatrick, Kaplan, Poland, Simmons-Duffin; Komargodski,
Zhiboedov; Gopakumar, Kaviraj, Sen, Sinha; Alday, Caron-Huot].


	Old results
	Old results


