
Closing all loopholes in quantum devices

Connor Behan

February 25, 2015



The problem

Alice Bob



The problem

Alice

Any classical communication
between them can be intercepted
by an intruder with the right type
of wire or antenna.

Bob

Plain Encrypted

Classical Trivially insecure Secure if the pair al-
ready knows a secret
key

Quantum Self-destructs upon
measurement if the
data is randomized

Desired solution



The problem

Alice

Any classical communication
between them can be intercepted
by an intruder with the right type
of wire or antenna.

Bob

Plain Encrypted

Classical Trivially insecure Secure if the pair al-
ready knows a secret
key

Quantum Self-destructs upon
measurement if the
data is randomized

Desired solution



Basic cryptography

Message:
Key:
Result:

100110101010101110010
010110110001101011001
110000011011000101011

• Bob reconstructs Alice’s message with the same operation.

• This “one time pad” is perfect the first time, vulnerable to
pattern recognition after.

• Quantum key distribution is the problem that must be solved.

[J Cryptol 5, 2–38, 1992]
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The BB84 protocol

Developed by Bennett and Brassard in 1984.

Eve

1

0

1. Alice encodes with a random basis.

2. Bob measures with a random basis.

3. After all transfers, Alice and Bob
publically reveal basis choices.

4. When choices agree, they check
agreement on a subset of data.

5. Data not revealed becomes the key.

1

0



The BB84 protocol

Eve chooses a different basis 1
2 of the time. Each time she causes

disagreement with probability 1
2 .

This has been used to safeguard
the 2007 Swiss election.

Imperfect devices have allowed their QKD systems to be defeated.

When two photons accidentally arrive, Eve can pass one
along, store the other and wait to learn the right basis
[PhysRevA 51, 1863–1869, 1995].
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Hacking avalanche photodiodes
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Above the breakdown, detectors are very sensitive and click
for single photons.

Otherwise they respond linearly and only click for light
above power P0.
If Bob’s APD is ever in linear mode (e.g. the quench after Alice’s
photon), Eve can use blinding to keep it this way.
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Hacking avalanche photodiodes

1. Eve chooses bases and measures bits as they come.

2. She retransmits a beam just above P0 to Bob when his
detector is linear.

3. If their bases agree, Bob sees the same as Eve. Otherwise he
thinks event was dropped.

4. Eve has whatever bits Alice tells Bob to keep.

5. No intrusion is detected because checking is only done when
Alice, Bob and Eve share a basis.

Protocols immune to weaknesses in the device are possible with
device independent QKD.
Vazirani and Vidick have developed the most robust one to date
[PRL 113, 140501, 2014].
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QKD with entanglement

→ |ψ〉 =
1√
2

(|00〉+ |11〉)←

π/4

Alice uses input xi ∈ {0, 1} to decide on
basis for output ai .
Bob uses input yi ∈ {0, 1} to decide on
basis for output bi .
If outputs saturate the Bell inequality,
nothing else can be entangled with the
system [PRL 67, 661–663, 1991].

π/8

3π/8



QKD with entanglement
For (x , y) = (0, 0), if Alice gets a 0, project onto
cos

(
π
8

)
〈0|+ sin

(
π
8

)
〈1|.

P(same) = cos2
(π

8

)
For (x , y) = (0, 1), if Alice gets a 0, project onto
cos

(
3π
8

)
〈0|+ sin

(
3π
8

)
〈1|.

P(different) = 1− cos2
(

3π

8

)
In a fraction of “Bell rounds” B, Alice and Bob should check if
ai ⊕ bi = xi ∧ yi is satisfied cos2

(
π
8

)
of the time. To form a key,

“Check rounds” C have Alice use the 3π
8 basis.∣∣∣∣ρKE − ρ /K ⊗ ρE ∣∣∣∣ < ε

ρ /K = diag

(
1

2|K |
, . . . ,

1

2|K |

)
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Privacy amplification

If they notice a Bell discrepancy, Alice and Bob must shorten their
key to reduce Eve’s knowledge.

A non-uniform

X ∈ {0, 1}p, P(X = X ′) ≤ 1

2q

has Hmin(X ) = q. A hash function acts as f : {0, 1}p → {0, 1}r . A
family of 2s such functions is parwise-universal if for all x 6= x ′, at
most 1

2r of the functions satisfy f (x) = f (x ′). Example:

x 1 2 . . . 2r 2r + 1 . . . 2r+1

f1(x) 1 2 . . . 2r 1 . . . 2r

f2(x) 2r 1 . . . 2r − 1 1 . . . 2r

...
...

...
. . .

...
...

. . .
...

f2r (x) 2 3 . . . 1 1 . . . 2r
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Privacy amplification

Leftover Hash Lemma
Supposed we have 2s pairwise universal hash-functions that output
r bit strings. If r ≤ Hmin(X )− 2 log2

(
1
ε

)
and the functions are

chosen uniformly, (F ,F (X )) is ε away from the uniform
distribution on r + s bits.

Proof.

P((F ,F (X )) = (F ′,F ′(X ′))) = P(F = F ′)P(F (X ) = F (X ′))

= P(F = F ′)

[
P(X = X ′) +

1

2r

]
≤ 1

2s

[
1

2q
+

1

2r

]
=

1

2r+s

[
1

2q−r
+ 1

]
≤ 1

2r+s

[
ε2 + 1

]
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Information reconciliation

Alice and Bob pick and communicate a hash function after the
measurements but they might apply it to different keys.

1. Alice sends Bob an l bit hash of her key X .

2. Bob sees if his key Y hashes to the same value.

3. If not, he modifies it to some X̂ in the support of the Y
marginal distribution.

P(X̂ 6= X ) = |supp(Y )|P(F (X̂ ) = F (X ))

= |supp(Y )| 1

2l

≤ ε

This says that l = Hmax(Y ) + log2
(
1
ε

)
. Think of the UNIX

program md5sum.
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Key length with noise

m

|B| |C|
|K|L "η"

The noise η is defined as the difference between the Bell success
probability and cos2

(
π
8

)
. Vazirani and Vidick’s bound uses the

binary entropy H(x) = −x log2(x)− (1− x) log2(1− x).

|K | = Hε
min(BC |E )− l − O

(
log2

(
1
ε

))
PA

|K | ≥ Hε
min(BC |E )− Hε

max(BC |AC )− O
(
log2

(
1
ε

))
IR

|K | ≥ Hε
min(BC |E )− H

(
11
10η

)
|C | − O

(
log2

(
1
ε

))
Noise estimate

|K | ≥ κ(η)|C | − H
(
11
10η

)
|C | − O

(
log2

(
1
ε

))
Rest of the paper

|K | ≥
[
κ(η)− H

(
11
10η

)
− O

(
1
m log2

(
1
ε

))]
|C | Since |C | ≈ m

6
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“A pair of entangled photons is
like a pair of hippies who are
spiritually in tune with one
another but not voicing coherent
opinions about anything.”

—Charles Bennett


