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What is universal in AdS / CFT?

String theories (with CFT duals) form an infinite family:

• AdS5 × S5

• AdS4 × CP3

• AdS3 × S3 × T4

• . . .

But many field theories have similar thermodynamics, e.g.

S ∝ V
1

d+1E
d

d+1 at high energies. Gravity sides cannot be
completely different.

First look at AdS5 × S5 ⇔ N = 4 Super Yang-Mills.
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[
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(sζ(d + 1) + s∗ζ∗(d + 1))VEd

] 1
d+1

Use s = s∗ = 128 and d = 9.
V has ω3L

3 from the S3 and a piece like L5 for AdS.
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Deriving the model

There are ρ(n1)ρ(n2) ways for this to happen. Consider
ρ(n) = AeBn

α
.

Diffusion Clustering

ρ(n1 − 1)ρ(n2 + 1) > ρ(n1)ρ(n2) ρ(n1 + 1)ρ(n2 − 1) > ρ(n1)ρ(n2)
α < 1 α > 1

• ρ(E ) log-concave

• S(E ) concave

• β(E ) decreasing
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Deriving the model
The master equation:

∂P({nr})
∂t

=
∑
{n′r}

P({n′r})W{n′r}→{nr} − P({nr})W{nr}→{n′r}

∂ 〈na〉
∂t

=
∑
k 6=0

∑
b

kW(na,nb)→(na+k,nb−k)

We want an equilibrium state to be:

P ({nr}) =
1

Z
exp(−βE )

∏
r

ρ(nr )

By detailed balance and locality:

W(na,nb)→(na+k,nb−k) =

{
C
(
na+nb

2

)
ρ(na)ρ(nb) n.n.

0 otherwise
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W(na,nb)→(na+k,nb−k) =

{
C
(
na+nb

2

)
ρ(na)ρ(nb) n.n.

0 otherwise



Deriving the model

Continuum limit: na + k becomes E (x) + ε, nb − k becomes
E (x + δ)− ε. Take the leading term for δ, ε→ 0.

∂E

∂t
= −δ2ε2∂i

(
C (E )ρ2(E )∂i

d log ρ(E )

dE

)
= −δ2ε2∂i

(
C (E )ρ2(E )∂iβ(E )

)
For small fluctuations this PDE is:

• Heat equation for α < 1

• Reverse heat equation for α > 1

• Static for α = 1



Deriving the model

Continuum limit: na + k becomes E (x) + ε, nb − k becomes
E (x + δ)− ε. Take the leading term for δ, ε→ 0.

∂E

∂t
= −δ2ε2∂i

(
C (E )ρ2(E )∂i

d log ρ(E )

dE

)
= −δ2ε2∂i

(
C (E )ρ2(E )∂iβ(E )

)

For small fluctuations this PDE is:

• Heat equation for α < 1

• Reverse heat equation for α > 1

• Static for α = 1



Deriving the model

Continuum limit: na + k becomes E (x) + ε, nb − k becomes
E (x + δ)− ε. Take the leading term for δ, ε→ 0.

∂E

∂t
= −δ2ε2∂i

(
C (E )ρ2(E )∂i

d log ρ(E )

dE

)
= −δ2ε2∂i

(
C (E )ρ2(E )∂iβ(E )

)
For small fluctuations this PDE is:

• Heat equation for α < 1

• Reverse heat equation for α > 1

• Static for α = 1



Deriving the model

-4 -2 0 2 4
sgn(x) * log(1 + x)

1

2

3

4

5

lo
g(

1 
+ 

E)

t = 0
t = 1650
t = 9950
t = 45800

Use high energies where the model is most effective.
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Deriving the model

-4 -2 0 2 4
sgn(x) * log(1 + x)

1

2

3

4

5

lo
g(

1 
+ 

E)

t = 0
t = 1650
t = 9950
t = 45800

Use high energies where the model is most effective.

Use Neumann boundary conditions to conserve energy.



Deriving the model

-4 -2 0 2 4
sgn(x) * log(1 + x)

1

2

3

4

5

lo
g(

1 
+ 

E)

t = 0
t = 1650
t = 9950
t = 45800

Use high energies where the model is most effective.
Use Neumann boundary conditions to conserve energy.



Nonlinear diffusion

∂E

∂t
= −∂i

(
C (E )ρ2(E )∂iβ(E )

)

= −∆β̃(E )

= ∆Φ(E )

Redefine β̃′(E ) = C (E )ρ2(E )β′(E ) or just assume C (E ) = ρ−2(E ).

Eliminate the E
1
7 part of β to make it a decreasing function.

E

β
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Nonlinear diffusion

E

Φ

EH

Concentration Comparison Theorem: For the same initial
condition, the equations

∂E

∂t
=


∆Φ1(E )

∆Φ(E )

∆Φ2(E )

satisfy T1 < T < T2.
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Nonlinear diffusion

x

E
EF

-a a

With piecewise linear Φ, this has an exact solution:

E (x , t) =

{
EF |x | < a− 2

√
tI

EH
1+erf(I )

(
1 + erf

(
a−|x |
2
√
t

))
|x | > a− 2

√
tI

where
√
πIe I

2
(1 + erf(I )) = EH

EF−EH
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Nonlinear diffusion

Use this to find the time for the peak to reach EH.

πd

4(1− α)β (Emin)

Emin

E 2
H

[
aEF

(
d − 1

d

)d−1
]2
< T <

πd

4(1− α)β (Emin)

Eα−1min

EαH

[
aEF

(
d − 1

d

)d−1
]2

Recall that Φ′1(0) is based on Emin, Φ′2(0) is based on EH.
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For C (E ) = 1, this becomes
Eα−1
min
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H

exp
(
−2β(Emin)

α
Eα
H

Eα−1
min

)
if

EH <
[

2−α
2β(Emin)E

1−α
min

] 1
α

.

If not,
(
2−α
2

) 2
α
−α

β(Emin)1−
2
α
E

2− 2
α

min

E2
H

e1−
2
α .

Note that T = O(N4) 6= O(N2).
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Numerical test

What we want to see:
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Large N ⇒ wide domain ⇒ tiny
Emin ⇒ trivial bounding
functions.
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Numerical test

d = 1: d = 2:

• Bounds are not very constraining.

• This problem is purely mathematical.

• Time in d = 2 is much shorter than in d = 1.

• There is probably no way around this.
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Numerical test

Consider infinite volume ∂E
∂t = ∆Φ(E ) where Φ(E ) = 1

α−1E
α−1.

Problem is intuitive for α > 1 but we want α = 9
10 .

Barenblatt solution for Dirac delta initial condition:

E (x , t) =


(

4
2−α − 2d

)
t

|x |2 + Bt
2

2−d(2−α)


1

2−α

Only well defined if 4
2−α − 2d > 0. Therefore α > 2− 2

d and we
can only have d = 1 in our case!
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Changing the model

Allow all conserved quantities to perform a random walk.

Transition rates should be based on

ρ(E ;P1, . . . ,Pd)

where 1, . . . , d are large directions.
By analogy,

W

([
E (x) E (x + δe)
P(x) P(x + δe)

]
→
[

E (x) + ε E (x + δe)− ε
P(x) + εe ′ P(x + δe)− εe ′

])
=

C

(
E (x) + E (x + δe)

2
;
P(x) + P(x + δe)

2

)
ρ(E (x);P(x))ρ(E (x + δe);P(x + δe))δe,e′
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Changing the model

To “first” order:

∂E

∂t
= 0

∂Pi

∂t
= −εδ∂i (Cρ2)

− ε3δ

d + 2
∂l

[
Cρ2

(
∂2 log ρ

∂E 2
δjk +

∂2 log ρ

∂Pj∂Pk

)]
(δijδkl + δikδjl + δilδjk)

− ε2δ2

d + 2
∂k

(
Cρ2∂l

∂ log ρ

∂Pj

)
(δijδkl + δikδjl + δilδjk)

− εδ3

d + 2
[6morelines]
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Changing the model

Hydrodynamic equations from

∂µT
µν = 0

consist of the continuity equation and Navier-Stokes equations.

Promote T , µ, uµ of an equilibrium thermal state to slowly
varrying functions.
Constitutive relations give all possible terms in Tµν from effective
field theory methods

• 0 derivatives “ideal hydrodynamics”

• 1 derivative “dissipative hydrodynamics”

• . . .
and η, ζ are transport coefficients.

There is no way ∂E
∂t = −ε2δ2∂i

(
Cρ2∂i

∂ log ρ
∂E

)
will linearize to

∂E
∂t = ∂iPi .
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The end

• Toy models for holographic gauge theories reveal a surprisingly
rich structure.

• Using SYM entropy with phases E
9
10 , E , E

8
7 , E

3
4 , we saw

plasma balls dual to black holes.

• The model is nicest in one dimension.

• In all dimensions, decay time bounds are rigorous but not the
most useful.

• Some parameters like ε, δ and C (E ) remain unknown.

• Thanks to Klaus Larjo, Nima Lashkari, Brian Swingle and
Mark Van Raamsdonk... and all of you.
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