# Simplifying Plasma Balls and Black Holes with Nonlinear Diffusion 

Connor Behan

July 14, 2014

## What is universal in AdS / CFT?

String theories (with CFT duals) form an infinite family:

- $A d S_{5} \times \mathbb{S}^{5}$
- $A d S_{4} \times \mathbb{C P}^{3}$
- $A d S_{3} \times \mathbb{S}^{3} \times \mathbb{T}^{4}$


## What is universal in AdS / CFT?

String theories (with CFT duals) form an infinite family:

- $A d S_{5} \times \mathbb{S}^{5}$
- $A d S_{4} \times \mathbb{C P}^{3}$
- $A d S_{3} \times \mathbb{S}^{3} \times \mathbb{T}^{4}$

But many field theories have similar thermodynamics, e.g. $S \propto V^{\frac{1}{d+1}} E^{\frac{d}{d+1}}$ at high energies. Gravity sides cannot be completely different.

## What is universal in AdS / CFT?

String theories (with CFT duals) form an infinite family:

- $A d S_{5} \times \mathbb{S}^{5}$
- $A d S_{4} \times \mathbb{C P}^{3}$
- $A d S_{3} \times \mathbb{S}^{3} \times \mathbb{T}^{4}$

But many field theories have similar thermodynamics, e.g. $S \propto V^{\frac{1}{d+1}} E^{\frac{d}{d+1}}$ at high energies. Gravity sides cannot be completely different.

First look at $A d S_{5} \times \mathbb{S}^{5} \Leftrightarrow \mathcal{N}=4$ Super Yang-Mills.

Gauge theory with one scale


Gauge theory with one scale


$$
d s^{2}=-\left(1+\frac{r^{2}}{L^{2}}\right) d t^{2}+\left(1+\frac{r^{2}}{L^{2}}\right)^{-1} d r^{2}+r^{2} d \Omega_{3}^{2}
$$

Gauge theory with one scale


$$
\begin{aligned}
d s^{2} & =-\left(1+\frac{r^{2}}{L^{2}}\right) d t^{2}+\left(1+\frac{r^{2}}{L^{2}}\right)^{-1} d r^{2}+r^{2} d \Omega_{3}^{2} \\
& \approx-\frac{r^{2}}{L^{2}} d t^{2}+\frac{L^{2}}{r^{2}} d r^{2}+r^{2} d \Omega_{3}^{2}
\end{aligned}
$$

Gauge theory with one scale


$$
\begin{aligned}
d s^{2} & =-\left(1+\frac{r^{2}}{L^{2}}\right) d t^{2}+\left(1+\frac{r^{2}}{L^{2}}\right)^{-1} d r^{2}+r^{2} d \Omega_{3}^{2} \\
& \approx-\frac{r^{2}}{L^{2}} d t^{2}+\frac{L^{2}}{r^{2}} d r^{2}+r^{2} d \Omega_{3}^{2} \\
& =p^{-1} \frac{r^{2}}{L^{2}}\left[-p d t^{2}+p \frac{L^{4}}{r^{2}} d r^{2}+p L^{2} d \Omega_{3}^{2}\right]
\end{aligned}
$$

## Gauge theory with one scale



$$
\begin{aligned}
d s^{2} & =-\left(1+\frac{r^{2}}{L^{2}}\right) d t^{2}+\left(1+\frac{r^{2}}{L^{2}}\right)^{-1} d r^{2}+r^{2} d \Omega_{3}^{2} \\
& \approx-\frac{r^{2}}{L^{2}} d t^{2}+\frac{L^{2}}{r^{2}} d r^{2}+r^{2} d \Omega_{3}^{2} \\
& =p^{-1} \frac{r^{2}}{L^{2}}\left[-p d t^{2}+p \frac{L^{4}}{r^{2}} d r^{2}+p L^{2} d \Omega_{3}^{2}\right]
\end{aligned}
$$

For $S Y M$ on $\mathbb{S}^{3}$ with arbitrary radius $R, E_{\mathrm{CFT}} R=E_{\mathrm{AdS}} L$.

Gauge theory with one scale


Gas of gravitons in AdS.

## Gauge theory with one scale




Gas of gravitons in AdS.

$$
S=\left[\frac{(d+1)^{d+1} d!\omega_{d}}{(2 \pi d)^{d}}\left(s \zeta(d+1)+s^{*} \zeta^{*}(d+1)\right) V E^{d}\right]^{\frac{1}{d+1}}
$$

## Gauge theory with one scale




Gas of gravitons in AdS.

$$
S=\left[\frac{(d+1)^{d+1} d!\omega_{d}}{(2 \pi d)^{d}}\left(s \zeta(d+1)+s^{*} \zeta^{*}(d+1)\right) V E^{d}\right]^{\frac{1}{d+1}}
$$

Use $s=s^{*}=128$ and $d=9$.

## Gauge theory with one scale




Gas of gravitons in AdS.

$$
S=\left[\frac{(d+1)^{d+1} d!\omega_{d}}{(2 \pi d)^{d}}\left(s \zeta(d+1)+s^{*} \zeta^{*}(d+1)\right) V E^{d}\right]^{\frac{1}{d+1}}
$$

Use $s=s^{*}=128$ and $d=9$.
$V$ has $\omega_{3} L^{3}$ from the $\mathbb{S}^{3}$ and a piece like $L^{5}$ for AdS.

## Gauge theory with one scale




Worldsheets of arbitrarily massive strings.

## Gauge theory with one scale




Worldsheets of arbitrarily massive strings.

$$
S=\beta_{\mathrm{H}} E
$$

## Gauge theory with one scale




Worldsheets of arbitrarily massive strings.

$$
\begin{aligned}
S & =\beta_{\mathrm{H}} E \\
\beta_{\mathrm{H}} & =\pi \sqrt{\alpha^{\prime}}\left(\sqrt{\frac{c}{6}}+\sqrt{\frac{\tilde{c}}{6}}\right)
\end{aligned}
$$

## Gauge theory with one scale




Worldsheets of arbitrarily massive strings.

$$
\begin{aligned}
S & =\beta_{\mathrm{H}} E \\
\beta_{\mathrm{H}} & =\pi \sqrt{\alpha^{\prime}}\left(\sqrt{\frac{c}{6}}+\sqrt{\frac{\tilde{c}}{6}}\right)
\end{aligned}
$$

For Type IIB, $c=\tilde{c}=12$.

Gauge theory with one scale



## Gauge theory with one scale




Schwarzschild black hole of mass $E$ :
$-\left(1-\frac{16 \pi G E}{d(d-1) \omega_{d} r^{d-2}}\right) \quad d t^{2}+\left(1-\frac{16 \pi G E}{d(d-1) \omega_{d} r^{d-2}}\right)^{-1} d r^{2} \ldots$

## Gauge theory with one scale




Schwarzschild black hole of mass $E$ :

$$
\begin{aligned}
-(1- & \left.\frac{16 \pi G E}{d(d-1) \omega_{d} r^{d-2}}\right) d t^{2}+\left(1-\frac{16 \pi G E}{d(d-1) \omega_{d} r^{d-2}}\right)^{-1} d r^{2} \ldots \\
& -\left(1-\frac{2 \pi G_{10} E}{9 \omega_{9} r^{7}}\right) d t^{2}+\left(1-\frac{2 \pi G_{10} E}{9 \omega_{9} r^{7}}\right)^{-1} d r^{2}+r^{2} d \Omega_{8}^{2}
\end{aligned}
$$

## Gauge theory with one scale




Schwarzschild black hole of mass $E$ :

$$
\begin{aligned}
-(1- & \left.\frac{16 \pi G E}{d(d-1) \omega_{d} r^{d-2}}\right) d t^{2}+\left(1-\frac{16 \pi G E}{d(d-1) \omega_{d} r^{d-2}}\right)^{-1} d r^{2} \ldots \\
& -\left(1-\frac{2 \pi G_{10} E}{9 \omega_{9} r^{7}}\right) d t^{2}+\left(1-\frac{2 \pi G_{10} E}{9 \omega_{g} r^{7}}\right)^{-1} d r^{2}+r^{2} d \Omega_{8}^{2}
\end{aligned}
$$

Horizon radius in terms of energy $\Rightarrow$ Area in terms of horizon radius $\Rightarrow S=\frac{A}{4 G_{10}}$.

Gauge theory with one scale



## Gauge theory with one scale



Do the same thing with $S=\frac{A}{4 G_{5}}$ and

$$
-\left(1+\frac{r^{2}}{L^{2}}-\frac{16 \pi G E}{d(d-1) \omega_{d} r^{d-2}}\right) d t^{2}+\left(1+\frac{r^{2}}{L^{2}}-\frac{16 \pi G E}{d(d-1) \omega_{d} r^{d-2}}\right)^{-1} d r^{2}
$$

Gauge theory with one scale


Do the same thing with $S=\frac{A}{4 G_{5}}$ and

$$
\begin{array}{r}
-\left(1+\frac{r^{2}}{L^{2}}-\frac{16 \pi G E}{d(d-1) \omega_{d} r^{d-2}}\right) d t^{2}+\left(1+\frac{r^{2}}{L^{2}}-\frac{16 \pi G E}{d(d-1) \omega_{d} r^{d-2}}\right)^{-1} d r^{2} \\
-\left(1+\frac{r^{2}}{L^{2}}-\frac{4 \pi G_{5} E}{3 \omega_{4} r^{2}}\right) d t^{2}+\left(1+\frac{r^{2}}{L^{2}}-\frac{4 \pi G_{5} E}{3 \omega_{4} r^{2}}\right) d r^{2}
\end{array}
$$

## Gauge theory with one scale



Do the same thing with $S=\frac{A}{4 G_{5}}$ and

$$
\begin{array}{r}
-\left(1+\frac{r^{2}}{L^{2}}-\frac{16 \pi G E}{d(d-1) \omega_{d} r^{d-2}}\right) d t^{2}+\left(1+\frac{r^{2}}{L^{2}}-\frac{16 \pi G E}{d(d-1) \omega_{d} r^{d-2}}\right)^{-1} d r^{2} \\
-\left(1+\frac{r^{2}}{L^{2}}-\frac{4 \pi G_{5} E}{3 \omega_{4} r^{2}}\right) d t^{2}+\left(1+\frac{r^{2}}{L^{2}}-\frac{4 \pi G_{5} E}{3 \omega_{4} r^{2}}\right) d r^{2}
\end{array}
$$

Integrate $\mathbb{S}^{5}$ out of the Einstein-Hilbert action to get $G_{5}=\frac{G_{10}}{6 \omega_{6} L^{5}}$.

## Gauge theory with one scale

Use $L^{4}=4 \pi g_{s} \alpha^{2} N, G_{5} L^{5}=8 \pi^{3} g_{s}^{2} \alpha^{\prime 4}$ and $\lambda=4 \pi g_{s} N$ from the correspondence.

## Gauge theory with one scale

Use $L^{4}=4 \pi g_{s} \alpha^{\prime 2} N, G_{5} L^{5}=8 \pi^{3} g_{s}^{2} \alpha^{\prime 4}$ and $\lambda=4 \pi g_{s} N$ from the correspondence.

$$
S= \begin{cases}10\left(\frac{2728}{9355} \pi^{8}\right)^{\frac{1}{10}}\left(\frac{E R}{9}\right)^{\frac{9}{10}} & E R \ll \lambda^{\frac{1}{4}} \\ 2 \pi\left(\frac{4}{\lambda}\right)^{\frac{1}{4}} E R & \lambda^{\frac{1}{4}} \ll E R \ll \lambda^{-\frac{7}{4}} N^{2} \\ \frac{9}{4}\left(\frac{1890}{N^{2}}\right)^{\frac{1}{7}}\left(\frac{\pi E R}{9}\right)^{\frac{8}{7}} & \lambda^{-\frac{7}{4}} N^{2} \ll E R \ll N^{2} \\ \pi \sqrt{N}\left(\frac{4}{3} E R\right)^{\frac{3}{4}} & N^{2} \ll E R\end{cases}
$$

## Gauge theory with one scale

Use $L^{4}=4 \pi g_{s} \alpha^{\prime 2} N, G_{5} L^{5}=8 \pi^{3} g_{s}^{2} \alpha^{\prime 4}$ and $\lambda=4 \pi g_{s} N$ from the correspondence.

$$
S= \begin{cases}10\left(\frac{2728}{9355} \pi^{8}\right)^{\frac{1}{10}}\left(\frac{E R}{9}\right)^{\frac{9}{10}} & E R \ll \lambda^{\frac{1}{4}} \\ 2 \pi\left(\frac{4}{\lambda}\right)^{\frac{1}{4}} E R & \lambda^{\frac{1}{4}} \ll E R \ll \lambda^{-\frac{7}{4}} N^{2} \\ \frac{9}{4}\left(\frac{1890}{N^{2}}\right)^{\frac{1}{7}}\left(\frac{\pi E R}{9}\right)^{\frac{8}{7}} & \lambda^{-\frac{7}{4}} N^{2} \ll E R \ll N^{2} \\ \pi \sqrt{N}\left(\frac{4}{3} E R\right)^{\frac{3}{4}} & N^{2} \ll E R\end{cases}
$$



## Gauge theory with one scale

Use $L^{4}=4 \pi g_{s} \alpha^{\prime 2} N, G_{5} L^{5}=8 \pi^{3} g_{s}^{2} \alpha^{\prime 4}$ and $\lambda=4 \pi g_{s} N$ from the correspondence.

$$
S= \begin{cases}10\left(\frac{2728}{9355} \pi^{8}\right)^{\frac{1}{10}}\left(\frac{E R}{9}\right)^{\frac{9}{10}} & E R \ll \lambda^{\frac{1}{4}} \\ 2 \pi\left(\frac{4}{\lambda}\right)^{\frac{1}{4}} E R & \lambda^{\frac{1}{4}} \ll E R \ll \lambda^{-\frac{7}{4}} N^{2} \\ \frac{9}{4}\left(\frac{1890}{N^{2}}\right)^{\frac{1}{7}}\left(\frac{\pi E R}{9}\right)^{\frac{8}{7}} & \lambda^{-\frac{7}{4}} N^{2} \ll E R \ll N^{2} \\ \pi \sqrt{N}\left(\frac{4}{3} E R\right)^{\frac{3}{4}} & N^{2} \ll E R\end{cases}
$$



## Gauge theory with one scale

Use $L^{4}=4 \pi g_{s} \alpha^{\prime 2} N, G_{5} L^{5}=8 \pi^{3} g_{s}^{2} \alpha^{\prime 4}$ and $\lambda=4 \pi g_{s} N$ from the correspondence.

$$
S= \begin{cases}10\left(\frac{2728}{9355} \pi^{8}\right)^{\frac{1}{10}}\left(\frac{E R}{9}\right)^{\frac{9}{10}} & E R \ll \lambda^{\frac{1}{4}} \\ 2 \pi\left(\frac{4}{\lambda}\right)^{\frac{1}{4}} E R & \lambda^{\frac{1}{4}} \ll E R \ll \lambda^{-\frac{7}{4}} N^{2} \\ \frac{9}{4}\left(\frac{1890}{N^{2}}\right)^{\frac{1}{7}}\left(\frac{\pi E R}{9}\right)^{\frac{8}{7}} & \lambda^{-\frac{7}{4}} N^{2} \ll E R \ll N^{2} \\ \pi \sqrt{N}\left(\frac{4}{3} E R\right)^{\frac{3}{4}} & N^{2} \ll E R\end{cases}
$$



## Gauge theory with one scale

Use $L^{4}=4 \pi g_{s} \alpha^{\prime 2} N, G_{5} L^{5}=8 \pi^{3} g_{s}^{2} \alpha^{\prime 4}$ and $\lambda=4 \pi g_{s} N$ from the correspondence.

$$
S= \begin{cases}10\left(\frac{2728}{9355} \pi^{8}\right)^{\frac{1}{10}}\left(\frac{E R}{9}\right)^{\frac{9}{10}} & E R \ll \lambda^{\frac{1}{4}} \\ 2 \pi\left(\frac{4}{\lambda}\right)^{\frac{1}{4}} E R & \lambda^{\frac{1}{4}} \ll E R \ll \lambda^{-\frac{7}{4}} N^{2} \\ \frac{9}{4}\left(\frac{1890}{N^{2}}\right)^{\frac{1}{7}}\left(\frac{\pi E R}{9}\right)^{\frac{8}{7}} & \lambda^{-\frac{7}{4}} N^{2} \ll E R \ll N^{2} \\ \pi \sqrt{N}\left(\frac{4}{3} E R\right)^{\frac{3}{4}} & N^{2} \ll E R\end{cases}
$$



Theory has confinement but it vanishes as $R \rightarrow \infty$.

## Gauge theory with two scales

$$
d s^{2}=\frac{L^{2}}{z^{2}}\left[-d t^{2}+d z^{2}+d y^{2}+d x_{i} d x^{i}\right]
$$

## Gauge theory with two scales

$$
d s^{2}=\frac{L^{2}}{z^{2}}\left[-d t^{2}+d z^{2}+d y^{2}+d x_{i} d x^{i}\right]
$$



## Gauge theory with two scales

$$
d s^{2}=\frac{L^{2}}{z^{2}}\left[-d t^{2}+d z^{2}+d \theta^{2}+d x_{i} d x^{i}\right]
$$



## Gauge theory with two scales

$$
\begin{aligned}
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-d t^{2}+d z^{2}+d \theta^{2}+d x_{i} d x^{i}\right] \\
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+d \theta^{2}+d x_{i} d x^{i}\right] \\
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d \theta^{2}+d x_{i} d x^{i}\right]
\end{aligned}
$$



## Gauge theory with two scales

$$
\begin{aligned}
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-d t^{2}+d z^{2}+d \theta^{2}+d x_{i} d x^{i}\right] \\
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+d \theta^{2}+d x_{i} d x^{i}\right] \\
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d \theta^{2}+d x_{i} d x^{i}\right]
\end{aligned}
$$



## Gauge theory with two scales

$$
\begin{aligned}
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+d \theta^{2}+d x_{i} d x^{i}\right] \\
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d \theta^{2}+d x_{i} d x^{i}\right]
\end{aligned}
$$



## Gauge theory with two scales

$$
\begin{aligned}
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+d \theta^{2}+d x_{i} d x^{i}\right] \\
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d \theta^{2}+d x_{i} d x^{i}\right]
\end{aligned}
$$



## Gauge theory with two scales

$$
\begin{aligned}
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+d \theta^{2}+d x_{i} d x^{i}\right] \\
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d \theta^{2}+d x_{i} d x^{i}\right]
\end{aligned}
$$



## Gauge theory with two scales

$$
\begin{aligned}
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+d \theta^{2}+d x_{i} d x^{i}\right] \\
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d \theta^{2}+d x_{i} d x^{i}\right]
\end{aligned}
$$



## Gauge theory with two scales

$$
\begin{aligned}
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+d \theta^{2}+d x_{i} d x^{i}\right] \\
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d \theta^{2}+d x_{i} d x^{i}\right]
\end{aligned}
$$



## Gauge theory with two scales

$$
\begin{aligned}
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+d \theta^{2}+d x_{i} d x^{i}\right] \\
& d s^{2}=\frac{L^{2}}{z^{2}}\left[-d t^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right)^{-1} d z^{2}+\left(1-\frac{z_{0}^{d}}{z^{d}}\right) d \theta^{2}+d x_{i} d x^{i}\right]
\end{aligned}
$$



AdS soliton has confined glueballs, AdS black hole has deconfined plasma.

## Gauge theory with two scales



Try to make these objects in a thermodynamic model where there are two scales:


## Deriving the model



There are $\rho\left(n_{1}\right) \rho\left(n_{2}\right)$ ways for this to happen. Consider $\rho(n)=A e^{B n^{\alpha}}$.

## Deriving the model



There are $\rho\left(n_{1}\right) \rho\left(n_{2}\right)$ ways for this to happen. Consider $\rho(n)=A e^{B n^{\alpha}}$.

| Diffusion | Clustering |
| :---: | :---: |
| $\rho\left(n_{1}-1\right) \rho\left(n_{2}+1\right)>\rho\left(n_{1}\right) \rho\left(n_{2}\right)$ | $\rho\left(n_{1}+1\right) \rho\left(n_{2}-1\right)>\rho\left(n_{1}\right) \rho\left(n_{2}\right)$ |
| $\alpha<1$ | $\alpha>1$ |

## Deriving the model



There are $\rho\left(n_{1}\right) \rho\left(n_{2}\right)$ ways for this to happen. Consider $\rho(n)=A e^{B n^{\alpha}}$.

| Diffusion | Clustering |
| :---: | :---: |
| $\rho\left(n_{1}-1\right) \rho\left(n_{2}+1\right)>\rho\left(n_{1}\right) \rho\left(n_{2}\right)$ | $\rho\left(n_{1}+1\right) \rho\left(n_{2}-1\right)>\rho\left(n_{1}\right) \rho\left(n_{2}\right)$ |
| $\alpha<1$ | $\alpha>1$ |

- $\rho(E)$ log-concave
- $S(E)$ concave
- $\beta(E)$ decreasing


## Deriving the model

The master equation:

$$
\begin{aligned}
\frac{\partial P\left(\left\{n_{r}\right\}\right)}{\partial t} & =\sum_{\left\{n_{r}^{\prime}\right\}} P\left(\left\{n_{r}^{\prime}\right\}\right) W_{\left\{n_{r}^{\prime}\right\} \rightarrow\left\{n_{r}\right\}}-P\left(\left\{n_{r}\right\}\right) W_{\left\{n_{r}\right\} \rightarrow\left\{n_{r}^{\prime}\right\}} \\
\frac{\partial\left\langle n_{a}\right\rangle}{\partial t} & =\sum_{k \neq 0} \sum_{b} k W_{\left(n_{a}, n_{b}\right) \rightarrow\left(n_{a}+k, n_{b}-k\right)}
\end{aligned}
$$

## Deriving the model

The master equation:

$$
\begin{aligned}
\frac{\partial P\left(\left\{n_{r}\right\}\right)}{\partial t} & =\sum_{\left\{n_{r}^{\prime}\right\}} P\left(\left\{n_{r}^{\prime}\right\}\right) W_{\left\{n_{r}^{\prime}\right\} \rightarrow\left\{n_{r}\right\}}-P\left(\left\{n_{r}\right\}\right) W_{\left\{n_{r}\right\} \rightarrow\left\{n_{r}^{\prime}\right\}} \\
\frac{\partial\left\langle n_{a}\right\rangle}{\partial t} & =\sum_{k \neq 0} \sum_{b} k W_{\left(n_{a}, n_{b}\right) \rightarrow\left(n_{a}+k, n_{b}-k\right)}
\end{aligned}
$$

We want an equilibrium state to be:

$$
P\left(\left\{n_{r}\right\}\right)=\frac{1}{Z} \exp (-\beta E) \prod_{r} \rho\left(n_{r}\right)
$$

## Deriving the model

The master equation:

$$
\begin{aligned}
\frac{\partial P\left(\left\{n_{r}\right\}\right)}{\partial t} & =\sum_{\left\{n_{r}^{\prime}\right\}} P\left(\left\{n_{r}^{\prime}\right\}\right) W_{\left\{n_{r}^{\prime}\right\} \rightarrow\left\{n_{r}\right\}}-P\left(\left\{n_{r}\right\}\right) W_{\left\{n_{r}\right\} \rightarrow\left\{n_{r}^{\prime}\right\}} \\
\frac{\partial\left\langle n_{a}\right\rangle}{\partial t} & =\sum_{k \neq 0} \sum_{b} k W_{\left(n_{a}, n_{b}\right) \rightarrow\left(n_{a}+k, n_{b}-k\right)}
\end{aligned}
$$

We want an equilibrium state to be:

$$
P\left(\left\{n_{r}\right\}\right)=\frac{1}{Z} \exp (-\beta E) \prod_{r} \rho\left(n_{r}\right)
$$

By detailed balance and locality:

$$
W_{\left(n_{a}, n_{b}\right) \rightarrow\left(n_{a}+k, n_{b}-k\right)}= \begin{cases}C\left(\frac{n_{a}+n_{b}}{2}\right) \rho\left(n_{a}\right) \rho\left(n_{b}\right) & \text { n.n. } \\ 0 & \text { otherwise }\end{cases}
$$

## Deriving the model

Continuum limit: $n_{a}+k$ becomes $E(x)+\epsilon, n_{b}-k$ becomes $E(x+\delta)-\epsilon$. Take the leading term for $\delta, \epsilon \rightarrow 0$.

## Deriving the model

Continuum limit: $n_{a}+k$ becomes $E(x)+\epsilon, n_{b}-k$ becomes $E(x+\delta)-\epsilon$. Take the leading term for $\delta, \epsilon \rightarrow 0$.

$$
\begin{aligned}
\frac{\partial E}{\partial t} & =-\delta^{2} \epsilon^{2} \partial_{i}\left(C(E) \rho^{2}(E) \partial_{i} \frac{\mathrm{~d} \log \rho(E)}{\mathrm{d} E}\right) \\
& =-\delta^{2} \epsilon^{2} \partial_{i}\left(C(E) \rho^{2}(E) \partial_{i} \beta(E)\right)
\end{aligned}
$$

## Deriving the model

Continuum limit: $n_{a}+k$ becomes $E(x)+\epsilon, n_{b}-k$ becomes $E(x+\delta)-\epsilon$. Take the leading term for $\delta, \epsilon \rightarrow 0$.

$$
\begin{aligned}
\frac{\partial E}{\partial t} & =-\delta^{2} \epsilon^{2} \partial_{i}\left(C(E) \rho^{2}(E) \partial_{i} \frac{\mathrm{~d} \log \rho(E)}{\mathrm{d} E}\right) \\
& =-\delta^{2} \epsilon^{2} \partial_{i}\left(C(E) \rho^{2}(E) \partial_{i} \beta(E)\right)
\end{aligned}
$$

For small fluctuations this PDE is:

- Heat equation for $\alpha<1$
- Reverse heat equation for $\alpha>1$
- Static for $\alpha=1$


## Deriving the model



## Deriving the model



Use high energies where the model is most effective.

## Deriving the model



Use high energies where the model is most effective. Use Neumann boundary conditions to conserve energy.

## Nonlinear diffusion

$$
\frac{\partial E}{\partial t}=-\partial_{i}\left(C(E) \rho^{2}(E) \partial_{i} \beta(E)\right)
$$

## Nonlinear diffusion

$$
\begin{aligned}
\frac{\partial E}{\partial t}= & -\partial_{i}\left(C(E) \rho^{2}(E) \partial_{i} \beta(E)\right) \\
& =-\Delta \tilde{\beta}(E)
\end{aligned}
$$

Redefine $\tilde{\beta}^{\prime}(E)=C(E) \rho^{2}(E) \beta^{\prime}(E)$ or just assume $C(E)=\rho^{-2}(E)$.

## Nonlinear diffusion

$$
\begin{aligned}
\frac{\partial E}{\partial t}= & -\partial_{i}\left(C(E) \rho^{2}(E) \partial_{i} \beta(E)\right) \\
& =-\Delta \tilde{\beta}(E)
\end{aligned}
$$

Redefine $\tilde{\beta}^{\prime}(E)=C(E) \rho^{2}(E) \beta^{\prime}(E)$ or just assume $C(E)=\rho^{-2}(E)$.


## Nonlinear diffusion

$$
\begin{aligned}
\frac{\partial E}{\partial t}= & -\partial_{i}\left(C(E) \rho^{2}(E) \partial_{i} \beta(E)\right) \\
& =-\Delta \tilde{\beta}(E)
\end{aligned}
$$

Redefine $\tilde{\beta}^{\prime}(E)=C(E) \rho^{2}(E) \beta^{\prime}(E)$ or just assume $C(E)=\rho^{-2}(E)$. Eliminate the $E^{\frac{1}{7}}$ part of $\beta$ to make it a decreasing function.


## Nonlinear diffusion

$$
\begin{aligned}
\frac{\partial E}{\partial t}= & -\partial_{i}\left(C(E) \rho^{2}(E) \partial_{i} \beta(E)\right) \\
& =-\Delta \tilde{\beta}(E) \\
& =\Delta \Phi(E)
\end{aligned}
$$

Redefine $\tilde{\beta}^{\prime}(E)=C(E) \rho^{2}(E) \beta^{\prime}(E)$ or just assume $C(E)=\rho^{-2}(E)$. Eliminate the $E^{\frac{1}{7}}$ part of $\beta$ to make it a decreasing function.


Nonlinear diffusion


Nonlinear diffusion


Nonlinear diffusion


## Nonlinear diffusion



Concentration Comparison Theorem: For the same initial condition, the equations

$$
\frac{\partial E}{\partial t}=\left\{\begin{array}{l}
\Delta \phi_{1}(E) \\
\Delta \Phi(E) \\
\Delta \Phi_{2}(E)
\end{array}\right.
$$

satisfy $T_{1}<T<T_{2}$.

Nonlinear diffusion


## Nonlinear diffusion



With piecewise linear $\Phi$, this has an exact solution:

$$
E(x, t)= \begin{cases}E_{\mathrm{F}} & |x|<a-2 \sqrt{t} l \\ \frac{E_{\mathrm{H}}}{1+\operatorname{erf}(I)}\left(1+\operatorname{erf}\left(\frac{a-|x|}{2 \sqrt{t}}\right)\right) & |x|>a-2 \sqrt{t} l\end{cases}
$$

where $\sqrt{\pi} l e^{I^{2}}(1+\operatorname{erf}(I))=\frac{E_{\mathrm{H}}}{E_{\mathrm{F}}-E_{\mathrm{H}}}$.

## Nonlinear diffusion

Use this to find the time for the peak to reach $E_{\mathrm{H}}$.

$$
\begin{aligned}
& \frac{\pi d}{4(1-\alpha) \beta\left(E_{\min }\right)} \frac{E_{\min }}{E_{\mathrm{H}}^{2}}\left[a E_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2}<T< \\
& \frac{\pi d}{4(1-\alpha) \beta\left(E_{\min }\right)} \frac{E_{\min }^{\alpha-1}}{E_{\mathrm{H}}^{\alpha}}\left[a E_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2}
\end{aligned}
$$

## Nonlinear diffusion

Use this to find the time for the peak to reach $E_{\mathrm{H}}$.

$$
\begin{aligned}
& \frac{\pi d}{4(1-\alpha) \beta\left(E_{\min }\right)} \frac{E_{\min }}{E_{\mathrm{H}}^{2}}\left[a E_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2}<T< \\
& \frac{\pi d}{4(1-\alpha) \beta\left(E_{\min }\right)} \frac{E_{\min }^{\alpha-1}}{E_{\mathrm{H}}^{\alpha}}\left[a E_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2}
\end{aligned}
$$

Recall that $\Phi_{1}^{\prime}(0)$ is based on $E_{\text {min }}, \Phi_{2}^{\prime}(0)$ is based on $E_{H}$.

## Nonlinear diffusion

Use this to find the time for the peak to reach $E_{H}$.

$$
\begin{aligned}
& \frac{\pi d}{4(1-\alpha) \beta\left(E_{\min }\right)} \frac{E_{\min }}{E_{\mathrm{H}}^{2}}\left[a E_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2}<T< \\
& \frac{\pi d}{4(1-\alpha) \beta\left(E_{\min }\right)} \frac{E_{\min }^{\alpha-1}}{E_{\mathrm{H}}^{\alpha}}\left[a E_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2}
\end{aligned}
$$

Recall that $\Phi_{1}^{\prime}(0)$ is based on $E_{\text {min }}, \Phi_{2}^{\prime}(0)$ is based on $E_{\mathrm{H}}$.

## Nonlinear diffusion

Use this to find the time for the peak to reach $E_{H}$.

$$
\begin{aligned}
& \frac{\pi d}{4(1-\alpha) \beta\left(E_{\min }\right)} \frac{E_{\min }}{E_{\mathrm{H}}^{2}}\left[a E_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2}<T< \\
& \frac{\pi d}{4(1-\alpha) \beta\left(E_{\min }\right)} \frac{E_{\min }^{\alpha-1}}{E_{\mathrm{H}}^{\alpha}}\left[a E_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2}
\end{aligned}
$$

Recall that $\Phi_{1}^{\prime}(0)$ is based on $E_{\text {min }}, \Phi_{2}^{\prime}(0)$ is based on $E_{\mathrm{H}}$. For $C(E)=1$, this becomes $\frac{E_{\min }^{\alpha-1}}{E_{\mathrm{H}}^{\alpha}} \exp \left(-\frac{2 \beta\left(E_{\min }\right)}{\alpha} \frac{E_{H}^{\alpha}}{E_{\text {min }}^{\alpha-1}}\right)$ if
$E_{\mathrm{H}}<\left[\frac{2-\alpha}{2 \beta\left(E_{\min }\right) E_{\min }^{1-\alpha}}\right]^{\frac{1}{\alpha}}$.

## Nonlinear diffusion

Use this to find the time for the peak to reach $E_{\mathrm{H}}$.

$$
\begin{aligned}
& \frac{\pi d}{4(1-\alpha) \beta\left(E_{\min }\right)} \frac{E_{\min }}{E_{\mathrm{H}}^{2}}\left[a E_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2}<T< \\
& \frac{\pi d}{4(1-\alpha) \beta\left(E_{\min }\right)} \frac{E_{\min }^{\alpha-1}}{E_{\mathrm{H}}^{\alpha}}\left[a E_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2}
\end{aligned}
$$

Recall that $\Phi_{1}^{\prime}(0)$ is based on $E_{\text {min }}, \Phi_{2}^{\prime}(0)$ is based on $E_{\mathrm{H}}$. For $C(E)=1$, this becomes $\frac{E_{\min }^{\alpha-1}}{E_{\mathrm{H}}^{\alpha}} \exp \left(-\frac{2 \beta\left(E_{\min }\right)}{\alpha} \frac{E_{H}^{\alpha}}{E_{\text {min }}^{\alpha-1}}\right)$ if $E_{\mathrm{H}}<\left[\frac{2-\alpha}{2 \beta\left(E_{\min }\right) E_{\min }^{1-\alpha}}\right]^{\frac{1}{\alpha}}$.
If not, $\left(\frac{2-\alpha}{2}\right)^{\frac{2}{\alpha}-\alpha} \beta\left(E_{\text {min }}\right)^{1-\frac{2}{\alpha} \frac{E_{\min }^{2}}{E_{\mathrm{H}}^{2}}} e^{1-\frac{2}{\alpha}}$.

## Nonlinear diffusion

Use this to find the time for the peak to reach $E_{\mathrm{H}}$.

$$
\begin{aligned}
& \frac{\pi d}{4(1-\alpha) \beta\left(E_{\min }\right)} \frac{E_{\min }}{E_{\mathrm{H}}^{2}}\left[a E_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2}<T< \\
& \frac{\pi d}{4(1-\alpha) \beta\left(E_{\min }\right)} \frac{E_{\min }^{\alpha-1}}{E_{\mathrm{H}}^{\alpha}}\left[a E_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2}
\end{aligned}
$$

Recall that $\Phi_{1}^{\prime}(0)$ is based on $E_{\text {min }}, \Phi_{2}^{\prime}(0)$ is based on $E_{\mathrm{H}}$.
For $C(E)=1$, this becomes $\frac{E_{\min }^{\alpha-1}}{E_{\mathrm{H}}^{\alpha}} \exp \left(-\frac{2 \beta\left(E_{\min }\right)}{\alpha} \frac{E_{H}^{\alpha}}{E_{\min }^{\alpha-1}}\right)$ if
$E_{\mathrm{H}}<\left[\frac{2-\alpha}{2 \beta\left(E_{\min }\right) E_{\min }^{1-\alpha}}\right]^{\frac{1}{\alpha}}$.
If not, $\left(\frac{2-\alpha}{2}\right)^{\frac{2}{\alpha}-\alpha} \beta\left(E_{\min }\right)^{1-\frac{2}{\alpha}} \frac{E_{\min }^{2-\frac{2}{\alpha}}}{E_{\mathrm{H}}^{2}} e^{1-\frac{2}{\alpha}}$.
Note that $T=O\left(N^{4}\right) \neq O\left(N^{2}\right)$.

## Numerical test



## Numerical test



What we actually see:


## Numerical test



What we actually see:


## Numerical test

What we want to see:



What we actually see:


Large $N \Rightarrow$ wide domain $\Rightarrow$ tiny
$E_{\text {min }} \Rightarrow$ trivial bounding functions.

## Numerical test

What we want to see:



What we actually see:


Large $N \Rightarrow$ wide domain $\Rightarrow$ tiny
$E_{\text {min }} \Rightarrow$ trivial bounding functions.

## Numerical test




## Numerical test




- Bounds are not very constraining.


## Numerical test




- Bounds are not very constraining.
- This problem is purely mathematical.


## Numerical test




- Bounds are not very constraining.
- This problem is purely mathematical.
- Time in $d=2$ is much shorter than in $d=1$.


## Numerical test




- Bounds are not very constraining.
- This problem is purely mathematical.
- Time in $d=2$ is much shorter than in $d=1$.
- There is probably no way around this.


## Numerical test

Consider infinite volume $\frac{\partial E}{\partial t}=\Delta \Phi(E)$ where $\Phi(E)=\frac{1}{\alpha-1} E^{\alpha-1}$.

## Numerical test

Consider infinite volume $\frac{\partial E}{\partial t}=\Delta \Phi(E)$ where $\Phi(E)=\frac{1}{\alpha-1} E^{\alpha-1}$. Problem is intuitive for $\alpha>1$ but we want $\alpha=\frac{9}{10}$.

## Numerical test

Consider infinite volume $\frac{\partial E}{\partial t}=\Delta \Phi(E)$ where $\Phi(E)=\frac{1}{\alpha-1} E^{\alpha-1}$. Problem is intuitive for $\alpha>1$ but we want $\alpha=\frac{9}{10}$. Barenblatt solution for Dirac delta initial condition:

$$
E(x, t)=\left[\frac{\left(\frac{4}{2-\alpha}-2 d\right) t}{|x|^{2}+B t^{2-d(2-\alpha)}}\right]^{\frac{1}{2-\alpha}}
$$

## Numerical test

Consider infinite volume $\frac{\partial E}{\partial t}=\Delta \Phi(E)$ where $\Phi(E)=\frac{1}{\alpha-1} E^{\alpha-1}$. Problem is intuitive for $\alpha>1$ but we want $\alpha=\frac{9}{10}$. Barenblatt solution for Dirac delta initial condition:

$$
E(x, t)=\left[\frac{\left(\frac{4}{2-\alpha}-2 d\right) t}{|x|^{2}+B t^{\frac{2}{2-d(2-\alpha)}}}\right]^{\frac{1}{2-\alpha}}
$$

Only well defined if $\frac{4}{2-\alpha}-2 d>0$. Therefore $\alpha>2-\frac{2}{d}$ and we can only have $d=1$ in our case!

## Changing the model

Allow all conserved quantities to perform a random walk.

## Changing the model

Allow all conserved quantities to perform a random walk. Transition rates should be based on

$$
\rho\left(E ; P_{1}, \ldots, P_{d}\right)
$$

where $1, \ldots, d$ are large directions.

## Changing the model

Allow all conserved quantities to perform a random walk. Transition rates should be based on

$$
\rho\left(E ; P_{1}, \ldots, P_{d}\right)
$$

where $1, \ldots, d$ are large directions.
By analogy,

$$
\begin{aligned}
& W\left(\left[\begin{array}{cc}
E(x) & E(x+\delta e) \\
P(x) & P(x+\delta e)
\end{array}\right] \rightarrow\left[\begin{array}{cc}
E(x)+\epsilon & E(x+\delta e)-\epsilon \\
P(x)+\epsilon e^{\prime} & P(x+\delta e)-\epsilon e^{\prime}
\end{array}\right]\right)= \\
& C\left(\frac{E(x)+E(x+\delta e)}{2} ; \frac{P(x)+P(x+\delta e)}{2}\right) \\
& \rho(E(x) ; P(x)) \rho(E(x+\delta e) ; P(x+\delta e)) \delta_{e, e^{\prime}}
\end{aligned}
$$

## Changing the model

To "first" order:

$$
\begin{aligned}
& \frac{\partial E}{\partial t}=0 \\
& \frac{\partial P_{i}}{\partial t}=-\epsilon \delta \partial_{i}\left(C \rho^{2}\right)
\end{aligned}
$$

## Changing the model

To "first" order:

$$
\begin{aligned}
\frac{\partial E}{\partial t} & =-\epsilon^{2} \delta^{2} \partial_{i}\left(C \rho^{2} \partial_{i} \frac{\partial \log \rho}{\partial E}\right) \\
\frac{\partial P_{i}}{\partial t} & =-\epsilon \delta \partial_{i}\left(C \rho^{2}\right)
\end{aligned}
$$

## Changing the model

To "first" order:

$$
\begin{aligned}
& \frac{\partial E}{\partial t}=-\epsilon^{2} \delta^{2} \partial_{i}\left(C \rho^{2} \partial_{i} \frac{\partial \log \rho}{\partial E}\right) \\
& \frac{\partial P_{i}}{\partial t}=-\epsilon \delta \partial_{i}\left(C \rho^{2}\right) \\
& -\frac{\epsilon^{3} \delta}{d+2} \partial_{l}\left[C \rho^{2}\left(\frac{\partial^{2} \log \rho}{\partial E^{2}} \delta_{j k}+\frac{\partial^{2} \log \rho}{\partial P_{j} \partial P_{k}}\right)\right]\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)
\end{aligned}
$$

## Changing the model

To "first" order:

$$
\begin{aligned}
& \frac{\partial E}{\partial t}=-\epsilon^{2} \delta^{2} \partial_{i}\left(C \rho^{2} \partial_{i} \frac{\partial \log \rho}{\partial E}\right) \\
& \frac{\partial P_{i}}{\partial t}=-\epsilon \delta \partial_{i}\left(C \rho^{2}\right) \\
& -\frac{\epsilon^{3} \delta}{d+2} \partial_{l}\left[C \rho^{2}\left(\frac{\partial^{2} \log \rho}{\partial E^{2}} \delta_{j k}+\frac{\partial^{2} \log \rho}{\partial P_{j} \partial P_{k}}\right)\right]\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \\
& -\frac{\epsilon^{2} \delta^{2}}{d+2} \partial_{k}\left(C \rho^{2} \partial_{l} \frac{\partial \log \rho}{\partial P_{j}}\right)\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)
\end{aligned}
$$

## Changing the model

To "first" order:

$$
\begin{aligned}
& \frac{\partial E}{\partial t}=-\epsilon^{2} \delta^{2} \partial_{i}\left(C \rho^{2} \partial_{i} \frac{\partial \log \rho}{\partial E}\right) \\
& \frac{\partial P_{i}}{\partial t}=-\epsilon \delta \partial_{i}\left(C \rho^{2}\right) \\
& -\frac{\epsilon^{3} \delta}{d+2} \partial_{l}\left[C \rho^{2}\left(\frac{\partial^{2} \log \rho}{\partial E^{2}} \delta_{j k}+\frac{\partial^{2} \log \rho}{\partial P_{j} \partial P_{k}}\right)\right]\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \\
& -\frac{\epsilon^{2} \delta^{2}}{d+2} \partial_{k}\left(C \rho^{2} \partial_{l} \frac{\partial \log \rho}{\partial P_{j}}\right)\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \\
& -\frac{\epsilon \delta^{3}}{d+2}[5 \text { more lines }]
\end{aligned}
$$

## Changing the model

To "first" order:

$$
\begin{aligned}
& \frac{\partial E}{\partial t}=-\epsilon^{2} \delta^{2} \partial_{i}\left(C \rho^{2} \partial_{i} \frac{\partial \log \rho}{\partial E}\right) \\
& \frac{\partial P_{i}}{\partial t}=-\epsilon \delta \partial_{i}\left(C \rho^{2}\right) \\
& -\frac{\epsilon^{3} \delta}{d+2} \partial_{l}\left[C \rho^{2}\left(\frac{\partial^{2} \log \rho}{\partial E^{2}} \delta_{j k}+\frac{\partial^{2} \log \rho}{\partial P_{j} \partial P_{k}}\right)\right]\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \\
& -\frac{\epsilon^{2} \delta^{2}}{d+2} \partial_{k}\left(C \rho^{2} \partial_{l} \frac{\partial \log \rho}{\partial P_{j}}\right)\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \\
& -\frac{\epsilon \delta^{3}}{d+2}[5 \text { more lines }]
\end{aligned}
$$

Numerics are difficult because of expressions for $\rho(E ; P)$.

## Changing the model

Hydrodynamic equations from

$$
\partial_{\mu} T^{\mu \nu}=0
$$

consist of the continuity equation and Navier-Stokes equations.

## Changing the model

Hydrodynamic equations from

$$
\partial_{\mu} T^{\mu \nu}=0
$$

consist of the continuity equation and Navier-Stokes equations. Promote $T, \mu, u^{\mu}$ of an equilibrium thermal state to slowly varrying functions.

## Changing the model

Hydrodynamic equations from

$$
\partial_{\mu} T^{\mu \nu}=0
$$

consist of the continuity equation and Navier-Stokes equations. Promote $T, \mu, u^{\mu}$ of an equilibrium thermal state to slowly varrying functions.
Constitutive relations give all possible terms in $T^{\mu \nu}$ from effective field theory methods

- 0 derivatives "ideal hydrodynamics"
- 1 derivative "dissipative hydrodynamics"
- . .
and $\eta, \zeta$ are transport coefficients.


## Changing the model

Hydrodynamic equations from

$$
\partial_{\mu} T^{\mu \nu}=0
$$

consist of the continuity equation and Navier-Stokes equations. Promote $T, \mu, u^{\mu}$ of an equilibrium thermal state to slowly varrying functions.
Constitutive relations give all possible terms in $T^{\mu \nu}$ from effective field theory methods

- 0 derivatives "ideal hydrodynamics"
- 1 derivative "dissipative hydrodynamics"
- ...
and $\eta, \zeta$ are transport coefficients.
There is no way $\frac{\partial E}{\partial t}=-\epsilon^{2} \delta^{2} \partial_{i}\left(C \rho^{2} \partial_{i} \frac{\partial \log \rho}{\partial E}\right)$ will linearize to $\frac{\partial E}{\partial t}=\partial_{i} P_{i}$.


## Changing the model



## The end

- Toy models for holographic gauge theories reveal a surprisingly rich structure.


## The end

- Toy models for holographic gauge theories reveal a surprisingly rich structure.
- Using SYM entropy with phases $E^{\frac{9}{10}}, E, E^{\frac{8}{7}}, E^{\frac{3}{4}}$, we saw plasma balls dual to black holes.


## The end

- Toy models for holographic gauge theories reveal a surprisingly rich structure.
- Using SYM entropy with phases $E^{\frac{9}{10}}, E, E^{\frac{8}{7}}, E^{\frac{3}{4}}$, we saw plasma balls dual to black holes.
- The model is nicest in one dimension.


## The end

- Toy models for holographic gauge theories reveal a surprisingly rich structure.
- Using SYM entropy with phases $E^{\frac{9}{10}}, E, E^{\frac{8}{7}}, E^{\frac{3}{4}}$, we saw plasma balls dual to black holes.
- The model is nicest in one dimension.
- In all dimensions, decay time bounds are rigorous but not the most useful.


## The end

- Toy models for holographic gauge theories reveal a surprisingly rich structure.
- Using SYM entropy with phases $E^{\frac{9}{10}}, E, E^{\frac{8}{7}}, E^{\frac{3}{4}}$, we saw plasma balls dual to black holes.
- The model is nicest in one dimension.
- In all dimensions, decay time bounds are rigorous but not the most useful.
- Some parameters like $\epsilon, \delta$ and $C(E)$ remain unknown.


## The end

- Toy models for holographic gauge theories reveal a surprisingly rich structure.
- Using SYM entropy with phases $E^{\frac{9}{10}}, E, E^{\frac{8}{7}}, E^{\frac{3}{4}}$, we saw plasma balls dual to black holes.
- The model is nicest in one dimension.
- In all dimensions, decay time bounds are rigorous but not the most useful.
- Some parameters like $\epsilon, \delta$ and $C(E)$ remain unknown.
- Thanks to Klaus Larjo, Nima Lashkari, Brian Swingle and Mark Van Raamsdonk... and all of you.

