Kaons et al: CP violation in the quark sector

Connor Behan

October 27, 2014



CPT symmetry

Physics is invariant under CPT.
e C switches particles and antiparticles: Co(x,t) = ¢*(x, t).
e P reflects position: Pp(x,t) = ¢(—x, t).
o T reflects in time: To(x,t) = ¢*(x, —t).

Evidence that they are not conserved separately is relatively recent.



The Wu experiment

In 1956, C. S. Wu studied the decay of cobalt-60 (spin 5) to
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The Cronin-Fitch experiment

In 1964, Cronin and Fitch looked at kaons decaying into pions.

7% = (gtad—lglaD)+(atal—lglan)
Plr% = (atat—latad)+(alat) —latad)=—|°)

Also, |79) is its own antiparticle (invariant under C).

Pl = — )
cpP ‘7r071'0> = ’7T07T0>
cP |7T+7T7> = C ‘7r77r+> = ‘7r+7r7>

A neutral, CP-odd particle cannot decay into two pions without
violating CP!
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The Cronin-Fitch experiment

Two mass eigenstates of neutral kaons:

|Ks) = f(\KO>+’KO>) CP|Ks) = |Ks)
\f
K) = -1 (K% — RO CP|K.) = —|K,
|KL) \@(‘ ) —1K")) |KL) |KL)
Down and strange quarks are distinguishable.
Detector 1
300 lifetimes He or N
Detector 2

Experiment found |K|) decaying into two pions!
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Standard model explanation

Mass matrices in the standard model are not diagonal.

Ly = U Mug+dMIdg+ h.c.
= TV Mg VRutik + 4 V] jMSas VR adk + hec.
= U MfiagUr + C_fL/\//giang + h.c.
We have defined u, = Vo yuj, do = Vo gd,. These can be inserted

into the weak coupling terms.
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We get a unitary quark mixing matrix called the

Cabibbo-Kobayashi-Maskawa matrix: Vexpy = VLJ,VT

Ld
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We need t(\) know how C and P act on standard model fields.
P C
¢(X7 t) d)(_xa t) ¢*(X7 t)
¢(Xa t) ’yoﬂ)(—X, t) I.’}/277ZJ*(X, t)
Au(x,t) | —Au(=x,t)  Al(x,t)

Perhaps using separate invariance of QED action.

Ly = \% [T W v+ d Vi W
g ) ) .
CPLyw = _\ﬁ [(—/U[”yofy2fyo> fy“WjV (/72fyOdL)

+ <_idLT Vovzvo) Vigtw, (i’YZVOUZ)}

= \% |:HLVT’)/“ WJUL + L_IL’)/” WM— V*dL]

This is CP symmetric if and only if Vekpy is real!
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CKM matrix parameters

A complex matrix has 2n? real parameters... n? if it is unitary.

d
[u c t]diag(e™'?*)Vdiag(e'®) | s | =[ae 7V
b

Removing 2n — 1 parameters this way, there are (n — 1)?
remaining. CP violation requires at least 3 generations!
1 0 0 C13 0 5136_"(s C12
0 23 523 0 1 0 —S512
0 —s3 o3 —si3e® 0 13 0

Measured values are sin 615 = 0.2229 4 0.0022,
sin 623 = 0.0412 + 0.0020, sin 613 = 0.0036 + 0.0007,
6 =1.02+£0.22.
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CKM matrix parameters

Muon decay: Hadron decay:

Ve
Ve
W
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This will measure |V,s|? but not the phase.

A = |A]e™ + |Aye

A = |A]e’® + |Ar]e?

A2 — |A]2 — .in 01— 02+ g1 — P2 .in 01— 02 — ¢1+ @2
4]A1]|Az| 2 2
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Indirect CP violation

Oscillation of KO — K° might be preferred over K% — KO in
semileptonic decay of a K; beam.
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= Plot from [PRL 52B 113,
oot i 1974] at Proton
nm: K DECAY TME +* (1050 ) SynChrOtrOn ShOWS CP

violation in the oscillation.

Ny — N_
lim —* =

=(3.324+£0.06)-103
Jm N (3.32 £ 0.06) - 10

This is a preference for K° over K° because 5d only decays to a
positron, sd only decays to an electron.
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Indirect CP violation

Evolve with a non-Hermitian Hamiltonian:

d [ KO i KO
il ko |- (=) [ &
Most general form consistent with CPT:

H— [ Mip — 4T Mz — 4T ]
M, — 5T, M — 5T
Eigenstates (with trivial time evolution) are:
|Ks) —p}K°>+q\R°> Ki) = p[K®) = q|K®)
[(ROIKO(8)) ‘
[(Ko[Ro()[* Ip

There is indirect CP violation if and only if ’g( 41
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Working out eigenvectors,

9 _ _ Mfz_é:rh
p Mo — 5112

Mo = (KO MIR®) ~ (kO] Mut |KO)



S

Indirect CP violation
Working out eigenvectors,

9 _ _ My, — %FE
p \| Mi2 — 410
Mha = (KO|MIRO) ~ & (K9] et )

Inami and Lim calculated this from interfering box diagrams.
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Direct CP violation

B meson (bd) experiments like LHCb see balanced oscillation. For
example [arXiv:1304.4741v1]:

' o Tagged mixed

EY 5 o Tagged unmixed
] 5; $ — Fit mixed

e Bit unmixed

4001~

candidates / (0.1 ps)

200 ;

Ow‘lw“ZHH3HH4
decay time [ps]

However, they observe
rB° = 7=K*+)—T(B° - ntK™)

_ = —0.098 £ 0.012
[(BO = 7 K*)+ (B = 7+K")
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Direct CP violation

Does the longer-lived meson with the lightest and second-heaviest
quarks contain the same stuff as atoms? Sakharov conditions for
baryogenesis are:

e C violation and CP violation.

e No thermal equilibrium in the early universe.

e Non-conservation of baryon number.
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First measured at B factories like BaBar and Belle. Photo from
[Francesco Meschial:

Vib rd Ven Vd
Vio Vig Vi Vea”

B® — K2¢ : 0.39 4+ 0.17
B® — K2J/1 0.68 4+ 0.03

Slight tension in values of —Im
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Plotting the triangle

Since CKM matrix is unitary, 6 entries in Vegxy VgKM must be 0.
Vid Vg + VusVis + Vi Ve = 0
Vid V:;f + Vis Vt*s + Vi t*b =
Vea Vig + VesVig + Ve Vi
Vs Vg + Ves Vg + Vis Vi
Vb Vigs + Veb Vs + Vip Vi
Vi Vg + Ve Vi + Vi Vi =

I
o o o o o

Vb V| |Vip V|

| Vep Vgl
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From [arXiv:hep-ph/0509219].

Stay tuned!
Thanks Professors McCarthy, Tsybychev.



